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Abstract
Lexical semantics theories differ in advocating that the meaning of words is represented as an
inference graph, a feature mapping or a vector space, thus raising the question: is it the case that
one of these approaches is superior to the others in representing lexical semantics appropriately?
Or in its non antagonistic counterpart: could there be a unified account of lexical semantics
where these approaches seamlessly emerge as (partial) renderings of (different) aspects of a core
semantic knowledge base?
In this paper, we contribute to these research questions with a number of experiments that
systematically probe different lexical semantics theories for their levels of cognitive plausibility
and of technological usefulness.
The empirical findings obtained from these experiments advance our insight on lexical semantics
as the feature-based approach emerges as superior to the other ones, and arguably also move us
closer to finding answers to the research questions above.

1 Introduction

Lexical semantics is at the core of language science and technology as the meaning of expressions results
from the meaning of their lexical units and the way these are combined. How to represent the meaning of
words is a central topic of inquiry and three broad families advocate that lexical semantics is represented
as a semantic network (Quillan, 1966), a feature-based mapping (Minsky, 1975; Bobrow and Norman,
1975), or a semantic space (Harris, 1954; Osgood et al., 1957; Miller and Charles, 1991).

In a semantic network approach, the meaning of a lexical unit is represented as a node in a graph whose
edges categorically encode different types of semantic relations holding among the units (e.g. hypernymy,
meronymy, etc.). In a feature-based model, the semantics of a lexicon is represented by a map where a
key is the lexical unit of interest and the respective value is a set of other units denoting characteristics
prototypically associated with the denotation of the unit in the key (e.g. color, usage, etc.). Under a
semantic space perspective, the meaning of a lexical unit is represented by a vector in a high-dimensional
space (aka word embedding), whose components are ultimately based on the frequency of co-occurrence
with other units, i.e. on their linguistic contexts of usage.

The motivation for these theories is to be found in their different suitability and success in explaining a
range of empirical phenomena in terms of how these are manifest in ordinary language usage and also how
they are elicited in laboratory experimentation. These phenomena are related to the acquisition, storage
and retrieval of lexical knowledge (e.g. the spread activation effect (Meyer and Schvaneveldt, 1971), the
fan effect (Anderson, 1974) among many others) and to the interaction with other cognitive faculties or
tasks, as categorization (Estes, 1994), reasoning (Rips, 1975), problem solving (Holyoak and Koh, 1987),
learning (Ross, 1984), etc.

These different approaches have inspired a number of initiatives to build repositories of lexical knowl-
edge. Popular representatives are, for semantic networks, WordNet (Fellbaum, 1998), for feature-based
models, SWOW (De Deyne et al., 2019), and for semantic spaces, word2vec (Mikolov et al., 2013b) a.o.
Different knowledge bases (KBs) are rooted in different empirical sources: WordNet is based on lexical
intuitions of human experts; the information in SWOW is evoked from laypersons cued with lexical units;
and word2vec reflects the co-occurrence frequency of words in texts.
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Figure 1: fMRI patterns in Participant 1 for word eye: predicted (left) with WordNet 60k embeddings via
matrix factorization, cf. §3.2.3 below; observed (right), as in the data set of (Mitchell et al., 2008).

Against this background, a fundamental research question is: could there be a unified account of lexical
semantics such that the above approaches seamlessly emerge as (partial) renderings of (different) aspects
of the same core semantic knowledge base? Or in its antagonistic counterpart: is it the case that one of the
above approaches is superior to the others in representing lexical semantics appropriately?

In this paper we contribute to these research questions with experiments consisting of two phases. First,
different lexical semantic KBs, instantiating different lexical semantic theories, are converted to a common
representation. The map-based dataset (SWOW) is converted to a graph-based representation and the two
graph-represented datasets (SWOW and WordNet) are then converted to a vector-based representation.
Second, to assess the appropriateness of these knowledge bases, the respective word embeddings are
evaluated by means of the performance in language processing tasks where they are integrated and where
lexical knowledge plays a crucial role.

We resort to the task of predicting brain activation patterns from semantic representations of words,
illustrated in Figure 1, to assess the lexical KBs. If a KB k1 is more successful than another k2 in
supporting these tasks, this indicates that k1 has higher cognitive plausibility, likely being superior at
encoding the meaning of words.

Second, we resort also to the task of determining the semantic similarity between words from their
formal semantic representations. Though it may arguably be less well grounded on actual cognitive
representation of lexical meaning given the empirical frailty of the similarity scores (Faruqui et al., 2016),
this has been a popular task for the intrinsic evaluation of word embeddings.

Third, for extrinsic evaluation, we resort to downstream Natural Language Processing (NLP) tasks.
As reported in the present paper, the findings from these experiments indicate that the feature-based

approach emerges as superior to the other approaches to the representation of lexical meaning.

2 Related Work

In (Mitchell et al., 2008), the meaning of each word w was represented by semantic features given by
the normalized co-occurrence counts in a big corpus of w with a set of 25 verbs related to basic sensory
and motor activities. For each word, the respective fMRI activation level at every voxel is calculated
as a weighted sum of each of the 25 semantic features, where the weights are learned by regression to
maximum likelihood estimates given the observed fMRI data. Mean accuracy of 0.77 was reported for the
60 words and 9 subjects in the task of predicting brain activation originated by the exposure to words.

In an initial period, different authors focused on different ways to set up the features supporting this task.
Jelodar et al. (2010) used the same 25 features but resorted to relatedness measures based on WordNet.
As features, Fernandino et al. (2015) used instead 5 sensory-motor experience-based attributes, and the
relatedness scores between the stimulus word and the attributes were based on human ratings. Binder et
al. (2016), in turn, used 65 attributes with relatedness scores crowdsourced from over 1,700 participants.

As embeddings became popular, authors moved from features to word embeddings. Murphy et al. (2012)
found their best results with dependency-based embeddings. Anderson et al. (2017) used word2vec
together with a visual model built with a CNN on the Google Images dataset.

Recently, Abnar et al. (2018) evaluated 8 embeddings in predicting fMRI patterns: the experiential
embeddings of Binder et al. (2016); the non-distributional feature-based embeddings of Faruqui et al.
(2015); and 5 different distributional embeddings, namely word2vec (Mikolov et al., 2013a), fastText

This work is licensed under a Creative Commons Attribution 4.0 International Licence,
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(Bojanowski et al., 2017a), dependency-based word2vec (Levy and Goldberg, 2014), GloVe (Pennington
et al., 2014) and LexVec (Salle et al., 2016); as well as the vectors from (Mitchell et al., 2008). The
dependency word2vec achieved the best performance among the embeddings, while the Mitchell’s et al.
(2008) seminal approach with 25 features “is doing slightly better on average” than the other approaches.

In contrast to these papers, the goal here is not to beat the state of the art in brain activation prediction
but to probe lexical semantic theories with the help of this task.

3 Common representations

To proceed with such comparative probing, a first step consists in the conversion of the different lexical
KBs into the common representation format of semantic vector spaces, which we describe in this section.

3.1 From lexical maps to graphs
In SWOW each word w is mapped into a collection of prominent features as these are named by words
elicited from laypersons cued with w (example in Fig. 2, Appendix). 83,863 participants were cued with
12,217 words to respond with 3 associated words, from which 100 responses were collected per cue,
resulting in each cue being associated 300 times (De Deyne et al., 2018). We follow the methodology and
data in (De Deyne et al., 2016b) to turn this map into a graph, rendered as an adjacency matrix. In the
resulting matrix AG, with every word displayed in the rows and columns, a cell AGij contains the count
frequency of word i with word j, the accumulated times that j was responded when i was cued.

3.2 From lexical graphs to vectors
To convert graphs into embeddings, we experimented with one outstanding representative from each major
family of conversion techniques, viz. based on edge reconstruction, matrix factorisation and random
walks.

3.2.1 Edge reconstruction
Conversion techniques based on edge reconstruction support efficient training but ensure optimisation
using only local information between nodes that are close to each other in the graph.

They operate on graphs represented as edge lists. An edge is a triple 〈lhs, rel, rhs〉where lhs (left-hand
side) and rhs are nodes connected by relation rel. The system is trained to recognize triples that are
feasible (present in the graph) from the infeasible ones.

As a representative of edge reconstruction techniques, we adopted Semantic Matching Energy (SME)
(Bordes et al., 2014) and used its publicly available implementation.1

Inference-based With WordNet, the triples were generated this way: for each word wlhs in the
vocabulary and for each synset slhs this word belongs to, a triple is generated for each word wrhs in each
synset srhs (that wrhs belongs to) such that there exists a relation rel between slhs and srhs, and both
wlhs and wrhs are in the vocabulary.2

The models were trained for 500 epochs, with evaluation at every 10 epochs, a learning rate of 0.01 and
200 batches. The remaining parameters were the default ones. The validation and test sets each made up
for around 5% of the dataset and the model with the best performance on the validation set was picked.
For a fair comparison among conversion methods, the training data is based on the same 60k vocabulary
as in the matrix factorisation in Section 3.2.3 below. The vocabulary was selected with the procedure used
in (Saedi et al., 2018; Branco et al., 2019), retaining the nodes with the largest number of outgoing edges.

Also for the sake of comparison with the other experiments with cooccurrence-based embeddings in
Section 3.3, we chose vectors of dimension 300.

Feature-based With SWOW, the relations were obtained from the associative strength files that were
generated by using the publicly available implementation.3 The strength file is generated for three
association types separately (R1, R2, R3), which induced three relations that were taken into account as
three rel types by the SME method with SWOW (Salawa, 2019).

1http://github.com/glorotxa/SME.
2Data extracted with NLTK www.nltk.org/_modules/nltk/corpus/reader/wordnet.html.
3http://github.com/SimonDeDeyne/SWOWEN-2018

http://github.com/glorotxa/SME
www.nltk.org/_modules/nltk/corpus/reader/wordnet.html
http://github.com/SimonDeDeyne/SWOWEN-2018
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We used the same implementation and methodology to obtain SME models as used for WordNet. We
empirically chose a smaller interval between the evaluations (every 5 epochs instead of 10) and a lower
learning rate (0.001 instead of 0.01) for better training. We took again a vector size of 300.

3.2.2 Random walk
Another family of graph embedding methods relies on ”text” that results from concatenating the words
in the nodes that are visited in a random walk through the graph. The word embeddings are obtained
from some deep learning techniques over that artificial text. Starting at a random node, at each iteration, a
neighbour node is randomly chosen (with a probability α) to be the starting point of the next iteration or
stopping the walk (with a probability 1-α) (Goikoetxea et al., 2015).

Differently from the edge reconstruction and matrix factorisation approaches, this technique is effective
and accommodates global information about the nodes. However, as it only considers the local context in
a path at each iteration, that makes it hard to stumble on an optimal sampling.

Inference-based We used the default Gensim’s (Řehůřek and Sojka, 2010) Skip-Gram implementation,
with a vector dimension of 300.

For the sake of comparability among KBs, we restricted the original technique to use only the edges
among nodes and to ignore the glosses. The random walk was applied to the same WordNet graph (60k
vocabulary) used with the edge reconstruction and matrix factorization techniques described above in
3.2.1 and below in 3.2.3.

Feature-based The random walk over SWOW used the same basic setup as used for WordNet.
The SWOW dataset used for edge reconstruction was converted into a graph input for UKB4 and

used the default UKB random walk parameters. To obtain the word embeddings, the default Gensim’s
Skip-Gram implementation with vectors of dimension 300 was used.

3.2.3 Matrix factorization
A third type of graph embedding method relies on graphs represented by matrices and on their factorization.
This is perhaps the family of techniques with the largest number of instances in the literature, which in
many cases result from slight variants in the tricks used to weight and condense the nodes in the matrix
(Cai et al., 2018).

Matrix factorisation inverts the trade-off found in edge reconstruction. It takes into account the affinity
between nodes at the global level of the graph, but at the cost of a large time and space consumption.

Inference-based To convert WordNet, we started by building an adjacency matrix with a size above
155k. Following (Saedi et al., 2018), we resorted to Katz index for the factorization technique, and used
the relevant parameters and other options empirically determined there — including, for an affordable
computational footprint, the same 60k subgraph, made of words with the largest number of outgoing arcs.

After the Katz procedure, a Positive Point-wise Mutual Information transformation (PMI+) was applied,
to reduce the frequency bias (De Deyne et al., 2016a), followed by L2-norm to normalise each line of the
matrix output by the Katz procedure, and finally a Principal Component Analysis (PCA) was applied to
reduce the dimension of the vectors, set to 300.

Feature-based The adjacency matrix from SWOW was factorised following the same steps.
Due to the small 12k vocabulary available from SWOW, no extraction of a subset was necessary as it

formed a dataset computationally manageable.

3.2.4 PMI
In addition to the matrix factorization method used above, in our experiments we resorted also to a
streamlined version of it where the computationally highly costly matrix inversion procedure in the Katz
index is skipped, remaining only the PMI transformation, followed by an L2 normalization, and PCA to
reduce the matrix size to 300.

Feature-based In SWOW, for each pair of cue and associated word, the PMI score was obtained from
the number of times they were associated one to the other divided by the product of the number of times
each was mentioned normalized by the number of association pairs.

4http://github.com/asoroa/ukb/ (default parameters)

http://github.com/asoroa/ukb/
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Inference-based In WordNet, for each synset pair related by one edge, the PMI score was obtained as
described previously for SWOW, considering a word in a synset as the cue and a word in a synset reached
by the edge as an associated word.

3.3 Coocurrence-based vectors
As cooccurrence-based KBs extracted from text, we took the predictive models word2vec (Mikolov et al.,
2013a), GloVe (Pennington et al., 2014), fastText (Bojanowski et al., 2017b), dependency-based word2vec
(Levy and Goldberg, 2014) and the contextual embeddings from BERT (Devlin et al., 2019).

4 Brain activity

4.1 Brain activation prediction
The task introduced by Mitchell et al. (2008) consists of predicting the fMRI activation patterns in human
subjects from some semantic representation of nouns. To collect the fMRI data used in (Mitchell et al.,
2008), 9 participants were randomly shown 60 different noun-picture pairs, each presented 6 times. For
each participant, a representative fMRI image for each stimulus was calculated as the mean fMRI response
from the 6 repetitions and subtracting the mean of all stimuli. This task consists of mapping an input
lexical semantic representation of each word into an approximation of its vector with the activation values
for the 3x3x6 mm3 voxels in the fMRI.

Training and evaluation To obtain the prediction models, we resorted to the implementation by Abnar
et al. (2018).5 The training ran for 1,000 epochs, with a batch size of 29 and a learning rate of 0.001.
The loss function was calculated by adding the Huber loss, the mean pairwise squared error and the
L2-norm (on weights and bias). Like in previous works, only the 500 most stable voxels were selected. We
followed the usual evaluation procedure for this task. Separate models were learned for the 9 participants
and evaluated using leave-two-out cross-validation, where the model was asked to predict the fMRI
activation for the two held-out words in each iteration. The predictions were matched against the observed
activations using cosine similarity over the 500 most stable voxels.

With each word embeddings from Section 3, a different model was trained for this task. Evaluation
results are in Table 1 (Appendix). Upon empirical experimentation, from BERT (base-uncased), the
concatenation of the last four layers provided the best results, and were used in all experiments.

Discussion The best options with cooccurrence- and feature-based models show a similar level of
performance (82.76% and 81.24% of accuracy) and are much better than the best option for the inference-
based model (72.76%).

Concerning graph embedding methods, their relative ranking depends on the type of lexical knowledge
base to which it is applied. For the inference-based ones (based on WordNet), edge reconstruction is
outperformed by matrix factorization, which is on a par or outperformed by random walk. For the
feature-based ones (based on SWOW), this ranking appears inverted: the random walk is outperformed
by the edge reconstruction — while matrix factorization appears with an outlier score, way below the
scores of any other option whatsoever. Hence, graph embedding techniques that take into account the
affinity between nodes at the global level of the graph are better for inference-based approaches (likely in
line with their supporting of transitivity), while for feature-based approaches (not supporting transitivity),
techniques taking into account local information between nodes close to each other are better.

Nevertheless, while showing high variability depending on the knowledge base to which it is applied,
it is the much more simple PMI (not originally conceived as a graph embedding method but as a mere
measure of association) that when applied to the SWOW-based graph, supports the top performance
(81.24%) among all the graph embedding methods.

Focusing on cooccurrence-based models, in turn, these show a good performance in a quite narrow 6
percentage points range, from fastText (76.57%) to dependency (82.76%).

All in all the striking empirical finding in this experiment is the very competitive result of SWOW-PMI
(81.24%) — a dataset only with 12k words, crowd sourced from laypersons cued for the simple associative
word retrieval task, and converted into embeddings with the simple PMI technique —, against the best

5https://github.com/samiraabnar/NeuroSemantics

https://github.com/samiraabnar/NeuroSemantics
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performing cooccurrence-based KB, dependency word2vec (82.76%) — based on a 1.5B corpus, parsed
for syntactic dependencies, with a 175k vocabulary and 900k syntactic contexts.

SWOW reflects the frequency of what types of objects in the world are encountered together in typical
situations — rather than the frequency of what words are together in text side by side. Dependency
embeddings reflect the frequency of what types of words in the text are encountered together as co-
arguments and modifiers in the same predicative structures, which denote typical situations encountered
in the world — rather than the frequency of what words are together in text side by side in linear windows
of context. These considerations seem to indicate that it is this essential aspect of their design, common
to both approaches, that lends them their superiority in this task. Given this is a task on brain activity
prediction, they seem to indicate also that, because of this, they have a higher cognitive plausibility to
represent lexical semantic knowledge than the other options.

4.2 Further brain activity prediction

CogniVal is a workbench to test word embeddings on a battery of tasks concerning the prediction of
cognitive activity related to language processing (Hollenstein et al., 2019). It encompasses 8 tasks for
behavioral activity (eye-tracking) and 8 tasks for brain activity (4 with EEG and 4 with fMRI). For a
tested word embeddings, CogniVal delivers an aggregated performance score in different tasks.

The 4 fMRI tasks include Mitchell et al.’s (2008) one plus three others, based on the datasets HARRY
POTTER (Wehbe et al., 2014), ALICE (Brennan et al., 2016) and PEREIRA (Pereira et al., 2018), which
concern the processing of sentences rather than words.

We evaluated all the embeddings used in Section 4.1 above with Mitchell et al.’s (2008) task also on
these 3 sentence-rooted fMRI-based tasks. Results are in Table 2 (Appendix).

Discussion A major difference to testing with Mitchell et al.’s (2008) dataset is that, for these 3
sentence-rooted fMRI-based embeddings, while the best cooccurrence-based option is also dependency
word2vec — also supporting now the top performance (0.0101; N.B.:lower scores are better) among all
options —, the best feature-based option (0.0111, with SWOW-PMI) is closer to the best inference-based
option (0.0107, with WordNet60k-PMI) than to the top cooccurrence-based one, and it is even slightly
outperformed by this WordNet60k-PMI option.

Another difference is that, while dependency keeps supporting the top performance, the ranking of the
other text-based embeddings in the previous experiment (Table 1) is somewhat inverted: for those coming
after dependency, the options that were the first two become now the last two and vice-versa (Table 2).

Yet another difference concerns the relative merits of the graph to embeddings conversion methods.
While different techniques were better with different KBs in the previous experiment, now there is
one method that outperforms the other two in both KBs, inference- and feature-based, namely edge
reconstruction. This method takes into account local information between nodes close to each other.

It is worth noting that while the dataset in (Mitchell et al., 2008) was collected with each word being
processed in isolation by the subjects, in the other three fMRI datasets in CogniVal, the information
was collected for words in the context of sentence processing. As from the experiment with Mitchell et
al.’s (2008) task above one noticed that word representations from SWOW and dependency are better at
reflecting the frequency of typical situations, this second experiment indicates that SWOW is inferior to
dependency at providing such type of cognitively plausible representations when fMRI patterns of words
are captured for their occurrence within sentences. Understandably, this should follow from the ways the
data in dependency (words in sentences) and SWOW (words in isolation) were collected.

5 Similarity and relatedness

The tasks considered in the third experiment consist of predicting the semantic similarity or relatedness
between words in pairs and in seeking to match the gold scores assigned by humans to such test pairs —
with the cosine between the predicted vectors mapped into the scale used for gold scores.

The goal in this paper is not to beat the state of the art in similarity prediction tasks but to understand
whether when testing embeddings from different empirical sources, these tasks deliver results similar to
those delivered by brain activity tasks — our interest is on gaining insight about whether the similarity
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tasks, based on simpler and cheaper data, can be used for the same practical purposes of the brain activity
tasks, based in much more expensive and hard to get data (Salawa et al., 2019).

For semantic similarity, we used SimLex-999 (with 999 pairs) (Hill et al., 2016), WordSim-353-
Similarity (203 pairs) (Agirre et al., 2009) and RG1965 (65) (Rubenstein and Goodenough, 1965).

For semantic relatedness, WordSim-353-Relatedness (252) (Agirre et al., 2009), MEN (3000) (Bruni
et al., 2012) and MTURK-771 (771) (Halawi et al., 2012) were used. The results for WordNet- , text- and
SWOW-based embeddings are in Tables 3, 4 and 5 (Appendix), respectively.

Discussion The major difference to the previous experiments is that now the best option is not obtained
with cooccurrence-based embeddings but with feature-based ones, whose best results on the 6 tasks (82.72
average; Table 5) are much better than the best results with cooccurrence-based ones (73.10 av.; Table 4),
which, in turn, are much better than the best results with inference-based ones (55.30 av.; Table 3).

Another difference concerns the graph to embeddings conversion methods. Now both inference-based
and feature-based lexical knowledge repositories are better converted with graph embedding methods
that take into account the affinity between nodes at the global level of the graph (matrix factorization or
random walk) — while the combination SWOW and PMI still outperforms all the other options in two of
the six tasks, and deliver results very close to the top ones in the other four.

Yet another difference is the ranking among the text-based embeddings. fastText, the third in the
sentence-based fMRI dataset (Table 2), is now first (Table 4), switching positions with dependency.

This outcome indicates that similarity and relatedness prediction tests are not probing for the same
characteristics probed with brain activity prediction tests — cognitive plausibility —, and these two
classes of tests for embeddings cannot be interchanged with each other.

Additionally, given the quite different rankings of the cooccurrence-based embeddings in the three
experiments above, together with their sharp underperformance vis-a-vis feature-based ones, one wonders
what the testing them on similarity tasks — used in the literature to assess their intrinsic quality — is
revealing about them, thus empirically reinforcing the issues raised analytically in (Faruqui et al., 2016).

6 Extrinsic evaluation

Results from intrinsic and extrinsic evaluation in NLP are not necessarily aligned with each other as
performance increments in intrinsic results may have or not an incremental impact on the intricacies and
performance of the larger systems where components happen to be embedded. As intrinsic vs. extrinsic
congruence is thus something that has to be determined empirically, it is important to proceed with probing
lexical semantics theories with downstream tasks,6 for their extrinsic evaluation.

For multi-task benchmark, we resort to GLUE platform (Wang et al., 2018), which contains 9 tasks of
3 types, from which we used a subset of 5 tasks with affordable computational footprint: the 2 single-
sentence tasks, CoLA and SST-2; 1 of the 3 similarity and paraphrase tasks, namely MRPC; and 2 of the
4 inference tasks, namely RTE and WNLI.

SST-2 is a task-based on the Stanford Sentiment Treebank (Socher et al., 2013) consisting of sentences
extracted from movie reviews and human annotation of their sentiment. The model trained on these data
has to determine the sentiment expressed in input sentences. The MRPC task is based on The Microsoft
Research Paraphrase Corpus (Dolan and Brockett, 2005) with sentence pairs automatically extracted from
online news and manually annotated as to whether the sentences in each pair are semantically equivalent.
The RTE task resorts to The Recognizing Textual Entailment datasets from online news, which result
from annual challenges for the task of textual entailment, and gather the data from RTE1 (Dagan et al.,
2005), RTE2 (Bar-Haim et al., 2006), RTE3 (Giampiccolo et al., 2007), and RTE5 (Bentivogli et al., 2009).
This task consists of predicting whether the premise entails the hypothesis in each test item. WNLI is
a task-based on the Winograd Schema Challenge (Levesque et al., 2012) where each example contains
a sentence with a pronoun and a list of admissible antecedents. This task consists of picking the right
antecedent. Finally, the CoLA task is based on the Corpus of Linguistic Acceptability.

consisting of examples of sentence acceptability judgments taken from books and journal articles on
linguistic theory, with each example being a string annotated as to whether it is grammatical.

6Examples a.o. of downstream tasks in (Rodrigues et al., 2017; Silveira and Branco, 2012; Costa and Branco, 2012).
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6.1 Training and evaluation

The goal here is not to reach the top of GLUE leader board. We are interested rather in the extrinsic
evaluation of lexical semantics theories, that is in understanding, under comparable circumstances, if and
how the embeddings based on different theories have a different impact on these tasks.

To pursue this goal, we adopted an architecture (Wang et al., 2019) that accommodates pretrained
semantic representations, comprising three levels: the input layer, the shared encoder layers and the
task-specific model. For the top layer with task-specific information in each downstream task, we used
the respective layer from GLUE. This top layer consists of a hidden layer of dimension 512, with the
Dropout technique (Srivastava et al., 2014) with p = 0.2, and layer normalization (Ba et al., 2016). The
final output layer is a softmax layer.

To obtain the middle layer, encoding sentence semantics, we used a 2-layered biLSTM with dimen-
sionality 1024. Instead of random initialization, the sentence encoder is first trained with one of the best
performing pretraining tasks reported in (Wang et al., 2019), namely STS-B.7

For the input layer, we experimented with each of the pretrained word embeddings discussed above in
Sections 4 and 5: for each downstream task, different models were trained with the different pretrained
word embeddings, and also with the baseline consisting of embeddings with random vectors. For cross-
validation, the framework made use of the original data splitting for training, development and test
partitioning. The results are in Table 6 (Appendix) and respective plotting in Figure 3.8

Discussion Comparing the overall performance across tasks, a first pattern emerges with a group of
two tasks, CoLA and WNLI, performing below half the respective absolute best possible score, and the
group with the other three tasks performing above.

In that first group, a large majority of the models with pretrained word embeddings perform below or at
best on a par with random embeddings. The two tasks in this group are very hard as they rely on rich
information about the grammatical structure of the sentences and on long-distance relations among their
expressions: to resolve anaphors and find their antecedents somewhere in the sentence, in WNLI; and to
categorically decide sentence membership in the language defined by the grammar, in CoLA. Hence, the
signal from the lexical information encoded in pretrained embeddings, from whatever lexical theory or
empirical source, has an impact that is null, in CoLa, or even detrimental, in WNLI, being of little value
to advance the research questions addressed here.

Turning to the other three tasks, the better is the performance of models for a given task, the more they
overperform the random baselines. The top performing datasets are dependency and SWOW-RandomWalk
— on a par in MRPC, and with SWOW-RandomWalk just slightly behind dependency in RTE and SST-2.

Concerning feature-based embeddings, these results confirm, also in extrinsic evaluation tasks, their
strength found in intrinsic tasks — where SWOW supported the best performing options in semantic
similarity and in word-rooted brain activity prediction tests. Given the consistent superiority of SWOW
embeddings in intrinsic tasks, and their very competitive performance here in dowstream tasks, these
results indicate that SWOW-based embeddings are likely one of the most reliable candidates to be used to
enhance NLP downstream tasks for which the contribution of (pre-trained) lexical knowledge is useful.

Concerning text-based embeddings, dependency (top in brain activation prediction) outperforms fastText
(top in similarity), thus in line with their relative ranking in the brain task, but inverting that relative
ranking in the similarity task. This reinforces the wondering about how useful NLP intrinsic tasks may be
to assess the text-based embeddings for their strength in downstream tasks, in line with (Chiu et al., 2016).

Concerning graph embedding methods, taking PMI aside, here edge reconstruction is overperformed
by matrix factorization, which is overperformed by random walk. Methods taking into account the affinity
between nodes at the global level of the graph seem thus better for extrinsic tasks. Another interesting
lesson is that, for each graph embedding method, models using SWOW embeddings overperform models
using WordNet embeddings — except for PMI, better now with WordNet than with SWOW.

7STS-B, The Semantic Textual Similarity Benchmark (Cer et al., 2017), is a task in GLUE consisting of determining the
similarity of two sentences on a continuous scale from 1 to 5.

8We repeated all experiments also with the middle layer contributing sentence semantics removed. The same basic outcome
patterns in Figure 3 (Appendix) were observed again.
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7 Conclusions

Contributions A first major contribution of this paper is the design of an experimental setup to compara-
tively probe lexical semantics theories of all kinds — feature-, inference- and cooccurrence-based — for
both their cognitive plausibility and their usefulness in NLP.

This setup consists of converting representative repositories of these theories to a common format and
integrating them, under such a common format, in different models for different probing tasks: • To be
converted, exemplar techniques from each major graph embedding family (edge reconstruction, matrix
factorization, random walk) were used. • To be probed for cognitive plausibility, some of these models
addressed fMRI-based brain activation prediction tasks. • To be probed for usefulness in NLP, some other
models addressed semantic similarity and relatedness prediction tasks, for intrinsic evaluation, and they
were also embedded in downstream NLP tasks, for extrinsic evaluation.

Another major contribution is the empirical results obtained with a systematic application of this
probing setup, including the central finding that the feature-based lexical knowledge base is superior to
knowledge bases complying with other lexical semantic theories in consistently supporting models with
top performance across the different probing tasks.

Concerning the other, incidental empirical findings: • As to graph embedding techniques, it was
possible to understand that graph embedding methods taking into account the affinity between nodes
at the global level of the graph tend to better serve downstream tasks. • As to intrinsic vs. extrinsic
NLP evaluation tasks, there emerged not an alignment between a superior performance in the former
and a superior performance in the latter, hence intrinsic performance of a lexical knowledge base is an
unreliable predictor of its extrinsic performance. • As to text-based embeddings, top performance models
in different tasks are supported by different embedding methods, hence the performance of a given method
for text-based embeddings in one task is an unreliable predictor of its performance in other tasks.

Discussion The overall superior performance of the feature-based SWOW lexical knowledge base is
the striking empirical result of the present study. This knowledge repository supported the top results,
without a close second, in semantic similarity and relatedness prediction. It was on a par to top results or a
close second in extrinsic tasks where the lexical signal has an impact. It was a close second in word-rooted
brain activity prediction. As expected, it was not shining only in sentence-rooted brain activity prediction.

It only adds to its outstanding record that it is uncertain how comparability can be fairly ensured
between SWOW and its alternatives. Dependency embeddings are extracted from a 1.5B corpus, with a
175k vocabulary (word2vec/100B, fastText/600B, GloVe/840B). SWOW has 12k words linked to each
other whose links were crowdsourced from 83k laypersons cued 3 times for basic word association.

It also adds to the overwhelming performance of SWOW that it comprises just 12k words while the
lexicon of an adult is estimated to consist of over 40k words (Brysbaert et al., 2016) — which additionally
emphasizes its yet untapped potential and the promise of extended versions with larger numbers of words.

To explain its strength, it is tempting to attribute it to SWOW’s higher cognitive plausibility. This
bears the underlying assumptions — epistemologically non trivial — that better performance at the
word-rooted brain activity prediction correlates with higher cognitive plausibility of lexical semantic
knowledge repositories, and higher cognitive plausibility correlates with better performance of NLP
systems where these repositories are embedded.

Future work Returning to one of our driving questions: could there be a unified account of lexical
semantics such that the three families of approaches to lexical meaning seamlessly emerge as (partial)
renderings of (different) aspects of the same core semantic knowledge base? The findings reported in this
paper make a positive answer to it increasingly attractive, with feature-based lexical knowledge being a
good candidate to that core knowledge repository.

It is worth noting though that one has a grasp on how to obtain cooccurrence-based lexicons from
feature-based ones (De Deyne et al., 2016b and the present paper); and also from inference-based ones
(Saedi et al., 2018 and the present paper) and vice-versa (Tarouti and Kalita, 2016). But whether it is
possible to go from text-embeddings like fastText to feature-based lexicons like SWOW, or from SWOW
to ontologies like WordNet remain open questions. Seeking to address these challenges is future work
that should help to further progress towards finding an answer to the research question above.
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Appendix

Figure 2: Visualization of the cue kite and its associated words in the SWOW lexical knowledge base.
Source: https://smallworldofwords.org/en/project/explore

fastText word2vec BERT GloVe depend

Cooccurrence-based 76.57 77.78 77.98 78.59 82.76

Edge Factor. Walk PMI

Inference-based (60k) 61.08 69.42 69.37 62.72
Inference-based (120k) 72.76 72.54
Feature-based 76.40 54.16 73.65 81.24

Table 1: Intrinsic evaluation: Performance with knowledge bases (rows) under different embedding
techniques (columns) in terms of accuracy in predicting brain activation with the word-rooted fMRI-
based data set of (Mitchell et al., 2008) (higher is better).

BERT GloVe fastText word2vec depend

Cooccurrence-based 0.0362 0.0256 0.0189 0.0143 0.0101

Edge Factor. Walk PMI

Inference-based (60k) 0.0117 0.0153 0.0520 0.0107
Inference-based (120k) 0.0280 0.0113
Feature-based 0.0121 2.5005 0.0288 0.0111

Table 2: Intrinsic evaluation: Performance with knowledge bases (rows) under different embedding
techniques (columns) in terms of accuracy in predicting brain activation with the three sentence-rooted
fMRI-based CogniVal datasets (Hollenstein et al., 2019) as mean squared error (lower is better).

https://smallworldofwords.org/en/project/explore
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PMI Edge Factor. Walk
Similarity

Simlex-999 28.26 39.63±1.55 49.90 50.93±0.15
WordSim-353Sim 42.61 54.93±2.31 50.80 67.40±0.30
RG1965 26.38 57.70±4.84 57.00 77.50±0.95
Relatedness

WordSim-353Rel 16.69 26.20±4.10 30.90 28.43±0.76
MEN 29.18 39.67±2.55 45.00 52.17±0.70
MTurk-771 37.22 42.40±1.25 52.80 52.90±0.50

Table 3: Intrinsic evaluation: Performance with WordNet 60k under graph to embedding conversion
techniques (columns) over test sets for semantic similarity and relatedness prediction (rows) in Spear-
man’s correlation coefficient (higher is better), with three runs averaged where relevant. The coverage
of the test sets with WordNet 60k: 100% of Simlex-999; 100% of WordSim-353 S; 98.0% of RG1965;
97.6% of WordSim-353 R; 83.4% of MEN; 99.9% of MTurk-771.

BERT GloVe depend w2vec fastText
Similarity

Simlex-999 27.65 37.52 44.56 43.61 49.24
WordSim-353Sim 58.66 62.98 75.88 74.08 79.74
RG1965 55.70 65.77 71.11 74.77 81.31
Relatedness

WordSim-353Rel 37.72 57.09 49.23 60.97 71.33
MEN 51.27 61.78 67.65 69.89 80.87
MTurk-771 44.43 63.07 62.23 65.69 76.13

Table 4: Intrinsic evaluation: Performance of cooccurrence-based word embeddings BERT, GloVe,
dependency embeddings, word2vec and fastText (columns) over test sets for semantic similarity and
relatedness prediction (rows) in Spearman’s correlation coefficient (higher is better).

Edge Walk Factor. PMI
Similarity

Simlex-999 54.13±6.20 69.33±0.06 67.80 68.54
WordSim-353Sim 77.07±4.76 84.53±0.06 85.00 83.73
RG1965 83.50±4.50 90.23±0.49 92.90 92.48
Relatedness

WordSim-353Rel 70.70±3.68 77.73±0.23 79.30 78.50
MEN 78.50±3.90 84.27±0.06 87.20 87.38
MTurk-771 74.77±4.21 81.10±0.17 80.90 82.39

Table 5: Intrinsic evaluation: Performance with SWOW under graph to embedding conversion tech-
niques (columns) over test sets for semantic similarity and relatedness prediction (rows) in Spearman’s
correlation coefficient (higher is better), with three runs averaged where relevant.The coverage of the
test sets with SWOW: 99.6% of Simlex-999; 90.6% of WordSim-353 S; 83.1% of RG1965; 87.3% of
WordSim-353 R; 89.4% of MEN; 93.3% of MTurk-771.
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Figure 3: Extrinsic evaluation: Performance of models with different input layer word embeddings
(bars) over the five different GLUE downstream tasks (groups), measured in different evaluation metrics
projected to a common range [0, 100]. The reported scores are the average of three runs. The source data
for this graph is in Table 6.

CoLA WNLI RTE MRPC SST-2
Random 12.37 ± 0.65 47.87 ± 8.80 57.90 ± 2.35 78.02 ± 0.78 65.70 ± 0.95
PMI WN 13.17 ± 2.83 32.40 ± 7.58 57.40 ± 0.99 80.12 ± 0.19 70.40 ± 0.59
PMI SW 10.70 ± 2.35 35.70 ± 8.15 54.97 ± 2.73 77.63 ± 0.47 63.30 ± 1.08
Edge WN 12.93 ± 2.11 46.47 ± 13.56 56.20 ± 2.71 77.47 ± 0.80 67.47 ± 0.31
Edge SW 10.97 ± 1.53 31.93 ± 4.28 55.83 ± 1.77 77.33 ± 0.78 69.50 ± 0.90
Fact WN 14.43 ± 1.85 37.10 ± 7.74 56.93 ± 1.17 79.82 ± 0.89 74.90 ± 0.52
Fact SW 12.93 ± 2.01 34.77 ± 7.76 58.60 ± 2.71 80.23 ± 1.03 80.70 ± 0.92
Walk WN 15.13 ± 1.95 34.27 ± 17.21 57.53 ± 1.81 80.62 ± 0.43 80.20 ± 0.26
Walk SW 14.87 ± 0.15 27.70 ± 3.58 59.43 ± 1.37 81.50 ± 1.26 82.63 ± 1.12
BERT 13.03 ± 1.97 26.77 ± 3.06 57.17 ± 0.46 78.38 ± 0.24 77.80 ± 0.78
fastText 16.43 ± 2.25 30.97 ± 6.40 57.73 ± 1.56 79.92 ± 0.48 81.87 ± 0.76
Dependency 14.40 ± 0.78 52.10 ± 7.27 61.47 ± 2.56 81.30 ± 0.23 84.57 ± 0.58

Table 6: Extrinsic evaluation: Performance over five GLUE downstream tasks (columns) of models
with different input layer word embeddings (rows). For the task CoLA, performance is measured with
Matthews correlation. For MRPC, an average of accuracy and F1 is reported. For the remaining tasks,
accuracy is reported. The evaluation scores were projected to a [0-100] common scale (higher is better),
with bold denoting top results. Each score is the average of the results from three runs with the random
seeds 1147, 1256 and 1179. To enhance the readability of eventual data patterns, the content of this table
is rendered in Figure 3.
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