@inproceedings{donatelli-etal-2020-two,
title = "A Two-Level Interpretation of Modality in Human-Robot Dialogue",
author = "Donatelli, Lucia and
Lai, Kenneth and
Pustejovsky, James",
editor = "Scott, Donia and
Bel, Nuria and
Zong, Chengqing",
booktitle = "Proceedings of the 28th International Conference on Computational Linguistics",
month = dec,
year = "2020",
address = "Barcelona, Spain (Online)",
publisher = "International Committee on Computational Linguistics",
url = "https://aclanthology.org/2020.coling-main.373",
doi = "10.18653/v1/2020.coling-main.373",
pages = "4222--4238",
abstract = "We analyze the use and interpretation of modal expressions in a corpus of situated human-robot dialogue and ask how to effectively represent these expressions for automatic learning. We present a two-level annotation scheme for modality that captures both content and intent, integrating a logic-based, semantic representation and a task-oriented, pragmatic representation that maps to our robot{'}s capabilities. Data from our annotation task reveals that the interpretation of modal expressions in human-robot dialogue is quite diverse, yet highly constrained by the physical environment and asymmetrical speaker/addressee relationship. We sketch a formal model of human-robot common ground in which modality can be grounded and dynamically interpreted.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="donatelli-etal-2020-two">
<titleInfo>
<title>A Two-Level Interpretation of Modality in Human-Robot Dialogue</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lucia</namePart>
<namePart type="family">Donatelli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kenneth</namePart>
<namePart type="family">Lai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">James</namePart>
<namePart type="family">Pustejovsky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 28th International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Donia</namePart>
<namePart type="family">Scott</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nuria</namePart>
<namePart type="family">Bel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chengqing</namePart>
<namePart type="family">Zong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>International Committee on Computational Linguistics</publisher>
<place>
<placeTerm type="text">Barcelona, Spain (Online)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We analyze the use and interpretation of modal expressions in a corpus of situated human-robot dialogue and ask how to effectively represent these expressions for automatic learning. We present a two-level annotation scheme for modality that captures both content and intent, integrating a logic-based, semantic representation and a task-oriented, pragmatic representation that maps to our robot’s capabilities. Data from our annotation task reveals that the interpretation of modal expressions in human-robot dialogue is quite diverse, yet highly constrained by the physical environment and asymmetrical speaker/addressee relationship. We sketch a formal model of human-robot common ground in which modality can be grounded and dynamically interpreted.</abstract>
<identifier type="citekey">donatelli-etal-2020-two</identifier>
<identifier type="doi">10.18653/v1/2020.coling-main.373</identifier>
<location>
<url>https://aclanthology.org/2020.coling-main.373</url>
</location>
<part>
<date>2020-12</date>
<extent unit="page">
<start>4222</start>
<end>4238</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Two-Level Interpretation of Modality in Human-Robot Dialogue
%A Donatelli, Lucia
%A Lai, Kenneth
%A Pustejovsky, James
%Y Scott, Donia
%Y Bel, Nuria
%Y Zong, Chengqing
%S Proceedings of the 28th International Conference on Computational Linguistics
%D 2020
%8 December
%I International Committee on Computational Linguistics
%C Barcelona, Spain (Online)
%F donatelli-etal-2020-two
%X We analyze the use and interpretation of modal expressions in a corpus of situated human-robot dialogue and ask how to effectively represent these expressions for automatic learning. We present a two-level annotation scheme for modality that captures both content and intent, integrating a logic-based, semantic representation and a task-oriented, pragmatic representation that maps to our robot’s capabilities. Data from our annotation task reveals that the interpretation of modal expressions in human-robot dialogue is quite diverse, yet highly constrained by the physical environment and asymmetrical speaker/addressee relationship. We sketch a formal model of human-robot common ground in which modality can be grounded and dynamically interpreted.
%R 10.18653/v1/2020.coling-main.373
%U https://aclanthology.org/2020.coling-main.373
%U https://doi.org/10.18653/v1/2020.coling-main.373
%P 4222-4238
Markdown (Informal)
[A Two-Level Interpretation of Modality in Human-Robot Dialogue](https://aclanthology.org/2020.coling-main.373) (Donatelli et al., COLING 2020)
ACL