@inproceedings{mino-etal-2020-effective,
title = "Effective Use of Target-side Context for Neural Machine Translation",
author = "Mino, Hideya and
Ito, Hitoshi and
Goto, Isao and
Yamada, Ichiro and
Tokunaga, Takenobu",
editor = "Scott, Donia and
Bel, Nuria and
Zong, Chengqing",
booktitle = "Proceedings of the 28th International Conference on Computational Linguistics",
month = dec,
year = "2020",
address = "Barcelona, Spain (Online)",
publisher = "International Committee on Computational Linguistics",
url = "https://aclanthology.org/2020.coling-main.396",
doi = "10.18653/v1/2020.coling-main.396",
pages = "4483--4494",
abstract = "In this paper, we deal with two problems in Japanese-English machine translation of news articles. The first problem is the quality of parallel corpora. Neural machine translation (NMT) systems suffer degraded performance when trained with noisy data. Because there is no clean Japanese-English parallel data for news articles, we build a novel parallel news corpus consisting of Japanese news articles translated into English in a content-equivalent manner. This is the first content-equivalent Japanese-English news corpus translated specifically for training NMT systems. The second problem involves the domain-adaptation technique. NMT systems suffer degraded performance when trained with mixed data having different features, such as noisy data and clean data. Though the existing methods try to overcome this problem by using tags for distinguishing the differences between corpora, it is not sufficient. We thus extend a domain-adaptation method using multi-tags to train an NMT model effectively with the clean corpus and existing parallel news corpora with some types of noise. Experimental results show that our corpus increases the translation quality, and that our domain-adaptation method is more effective for learning with the multiple types of corpora than existing domain-adaptation methods are.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="mino-etal-2020-effective">
<titleInfo>
<title>Effective Use of Target-side Context for Neural Machine Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hideya</namePart>
<namePart type="family">Mino</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hitoshi</namePart>
<namePart type="family">Ito</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Isao</namePart>
<namePart type="family">Goto</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ichiro</namePart>
<namePart type="family">Yamada</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Takenobu</namePart>
<namePart type="family">Tokunaga</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 28th International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Donia</namePart>
<namePart type="family">Scott</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nuria</namePart>
<namePart type="family">Bel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chengqing</namePart>
<namePart type="family">Zong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>International Committee on Computational Linguistics</publisher>
<place>
<placeTerm type="text">Barcelona, Spain (Online)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we deal with two problems in Japanese-English machine translation of news articles. The first problem is the quality of parallel corpora. Neural machine translation (NMT) systems suffer degraded performance when trained with noisy data. Because there is no clean Japanese-English parallel data for news articles, we build a novel parallel news corpus consisting of Japanese news articles translated into English in a content-equivalent manner. This is the first content-equivalent Japanese-English news corpus translated specifically for training NMT systems. The second problem involves the domain-adaptation technique. NMT systems suffer degraded performance when trained with mixed data having different features, such as noisy data and clean data. Though the existing methods try to overcome this problem by using tags for distinguishing the differences between corpora, it is not sufficient. We thus extend a domain-adaptation method using multi-tags to train an NMT model effectively with the clean corpus and existing parallel news corpora with some types of noise. Experimental results show that our corpus increases the translation quality, and that our domain-adaptation method is more effective for learning with the multiple types of corpora than existing domain-adaptation methods are.</abstract>
<identifier type="citekey">mino-etal-2020-effective</identifier>
<identifier type="doi">10.18653/v1/2020.coling-main.396</identifier>
<location>
<url>https://aclanthology.org/2020.coling-main.396</url>
</location>
<part>
<date>2020-12</date>
<extent unit="page">
<start>4483</start>
<end>4494</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Effective Use of Target-side Context for Neural Machine Translation
%A Mino, Hideya
%A Ito, Hitoshi
%A Goto, Isao
%A Yamada, Ichiro
%A Tokunaga, Takenobu
%Y Scott, Donia
%Y Bel, Nuria
%Y Zong, Chengqing
%S Proceedings of the 28th International Conference on Computational Linguistics
%D 2020
%8 December
%I International Committee on Computational Linguistics
%C Barcelona, Spain (Online)
%F mino-etal-2020-effective
%X In this paper, we deal with two problems in Japanese-English machine translation of news articles. The first problem is the quality of parallel corpora. Neural machine translation (NMT) systems suffer degraded performance when trained with noisy data. Because there is no clean Japanese-English parallel data for news articles, we build a novel parallel news corpus consisting of Japanese news articles translated into English in a content-equivalent manner. This is the first content-equivalent Japanese-English news corpus translated specifically for training NMT systems. The second problem involves the domain-adaptation technique. NMT systems suffer degraded performance when trained with mixed data having different features, such as noisy data and clean data. Though the existing methods try to overcome this problem by using tags for distinguishing the differences between corpora, it is not sufficient. We thus extend a domain-adaptation method using multi-tags to train an NMT model effectively with the clean corpus and existing parallel news corpora with some types of noise. Experimental results show that our corpus increases the translation quality, and that our domain-adaptation method is more effective for learning with the multiple types of corpora than existing domain-adaptation methods are.
%R 10.18653/v1/2020.coling-main.396
%U https://aclanthology.org/2020.coling-main.396
%U https://doi.org/10.18653/v1/2020.coling-main.396
%P 4483-4494
Markdown (Informal)
[Effective Use of Target-side Context for Neural Machine Translation](https://aclanthology.org/2020.coling-main.396) (Mino et al., COLING 2020)
ACL