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Abstract

We perform a corpus analysis to develop a representation of the knowledge and reasoning used
to interpret indirect speech acts. An indirect speech act (ISA) is an utterance whose intended
meaning is different from its literal meaning. We focus on those speech acts in which slight
changes in situational or contextual information can switch the dominant intended meaning of an
utterance from direct to indirect or vice-versa. We computationalize how various contextual fea-
tures can influence a speaker’s beliefs, and how these beliefs can influence the intended meaning
and choice of the surface form of an utterance. We axiomatize the domain-general patterns of
reasoning involved, and implement a proof-of-concept architecture using Answer Set Program-
ming. Our model is presented as a contribution to cognitive science and psycholinguistics, so
representational decisions are justified by existing theoretical work.

1 Introduction

Understanding natural language utterances inherently involves resolving ambiguity associated with the
meaning of linguistic expressions. Resolving linguistic ambiguity involves choosing one amongst many
possible meanings, at the word level, at the sentence level, and at the discourse level. Word and sentence
embeddings are current topics of active research and focus on selecting suitable word or sentence rep-
resentations that best capture meaning. Current transformer architectures such as BERT (Devlin et al.,
2018) are used to pretrain language representations so word and sentence embeddings account for nearby
linguistic context. These systems are based on two key insights that we explore in this paper. The first
insight is that word meanings (in the case of BERT) and span meanings (in the case of SpanBERT (Joshi
et al., 2020)) cannot be understood separate from their context, which in these cases is primarily linguis-
tic context. Using these contextualized language embeddings have led to state-of-the-art performance in
several downstream tasks. However, there is still the open problem of how to incorporate extra-linguistic
context. Specifically, it is unclear how to categorize and use knowledge derived from common sense
knowledge about how the world works as well as situational knowledge about aspects of the physical
environment in a systematic way for NLU.

The second insight is that the way context influences meaning can be entirely captured statistically
from data. That is, a word encountered together with context in a particular way is likely to mean the
same as the same word encountered in a similar linguistic context. The assumption is that systems
with sufficient training data, or at least with powerful pretrained models are likely to interpret language
correctly. However, Cohen (2019) and others have argued that pattern recognition by itself might be
insufficient, and such an association might require logical reasoning beyond learning statistical similarity.

Recent work by Sarathy et al. (2019) explored both these insights and argued that for the task of
coreference resolution (at least with respect to imperative discourse), to interpret a pronoun an NLU
system must reason about actions and change, normative obligations and social aspects, and the intent of
speakers. Knowledge from situational context combined with background domain-general knowledge is
needed to perform this reasoning. Meaning is derived from choosing the interpretation that makes the
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“most sense” (not just in terms of statistical regularity, but in terms of coherence more broadly) given a
variety of contextual factors.

We are inspired by this key idea to explore how context and reasoning can assist not only at the word
level (as Sarathy et al. have done), but at the sentence level. Specifically, we address the problem of
how a listener can infer the intended meaning of an utterance given contextual knowledge. Sometimes,
as in Indirect Speech Acts (ISAs), the literal meaning of a sentence (derived from the surface form)
can be different from its intended meaning (Searle, 1975; Austin, 1975; Gordon and Lakoff, 1975). For
example, the utterance “can you open the door?” has a literal meaning of an elicitation of information
from the listener regarding the listener’s ability to open the door – this is because the utterance has the
surface form of a question. And in fact, the speaker may in some cases be interested in whether the
hearer is capable of opening the door: if the hearer is physically disabled and the speaker is a caregiver,
for example. However, very frequently, the intended meaning of the utterance is a request that the listener
perform the action of opening the door, in which case the utterance is an ISA. As this example suggests,
the proper interpretation is guided by context.

Research has shown that ISA use is common in human-human communication (Levinson, 2001), as
well as in human-robot task-based dialogues (Williams et al., 2018)1. The problem, however, is that ISAs
are notoriously difficult to computationalize when their interpretation is influenced by contextual factors
(Williams et al., 2018; Briggs et al., 2017). Unlike past approaches to ISA interpretation, we incorporate
a broader notion of context and extended reasoning capabilities to reason about the speaker’s intent and
beliefs.

Our contributions include a computational formalization of (1) the preconditions, related to the
speaker’s intentions and beliefs, that need to be satisfied to determine if a surface form carries indi-
rect meaning, (2) the reasoning needed to infer speaker beliefs based on domain general principles about
the world (e.g., inertia), expectations of linguistic alignment, and mutual knowledge and (3) the repre-
sentations needed to assimilate factual contextual evidence available to the listener into the reasoning
process. To make this work more tractable, we limit our focus to speech acts that have the surface form
of a question, the literal meaning of an Ask for information, and the intended meaning of an Ask for infor-
mation (in which case the speech act is not an ISA) or a Request for action (in which case the speech act
is an ISA). In the tradition of past work in computationally-aided linguistic analysis, these formalizations
are derived using examples from several task-oriented dialogue corpora.

2 Approach

Our approach is based on two traditions. First, the tradition from computational linguistics of building
formal representations of linguistic phenomena from corpora, guided by linguistic and cognitive scien-
tific theories. Recent papers in this tradition were presented by Jiménez-Zafra et al. (2018) and Ilievski et
al. (2018). We emphasize that the model that we build from this corpus analysis is a cognitive scientific
model, which builds on theories from cognitive science and psycholinguistics as described in Section 3.

Second, the tradition of building explicit knowledge representation formalisms along with reasoners
capable of deriving meaning of natural language expressions from their logical forms. Recent work in
this tradition has been performed by Sarathy et al. (2019), Sharma et al. (2015), and Wilske and Kruijff
(2006).

Combining these traditions, we perform a corpus analysis to extract archetypal utterances from a
variety of corpora; this process includes a consensus annotation of those utterance’s direct and indirect
meanings, as well as of the context that influences that interpretation, as described in Section 2.1. Then
we build a formal computational model of the representations and reasoning required to perform those
interpretations, ensuring that the computational model performs a complete coverage of the archetypal
utterances, as described in Section 2.2. The resulting model is detailed in Section 3.

1People not only use ISAs but repair ineffective ISAs with other ISAs, supporting the idea that humans have a strong
preference for ISAs.
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2.1 Corpus Analysis

We are motivated to perform a corpus analysis because of limitations in existing corpora, which include
dialogue act classification and intent recognition datasets, e.g. by Li et al. (2017), Shriberg et al. (2004),
and Jurafsky et al. (1998). These corpora cannot be used as-is for reasons shown by Roque et al. (2020):
because ISAs are context-sensitive, ISA Schemas need to be developed. These are data structures that
are made up of an utterance and two different context representations; in one of the contexts the utterance
is an ISA, and in the other context the utterance is not an ISA. However, these ISA Schemas do not seem
to be amenable to economy-of-scale authoring techniques such as crowdsourcing, so some amount of
expert authoring seems to be required. For that reason, we used a corpus analysis approach suggested by
Roque et al. (2020): using real-world corpora to manually author ISAs. We proceeded as follows.

First, we obtained three existing corpora, selected to provide variation (speech vs text, virtual-world vs
real-world, human-human vs human-robot, navigation vs construction) while retaining a focus on task-
based communication: (1) SCARE corpus (Stoia et al., 2008) in which one person helped another person
navigate through a virtual environment, (2) Diorama corpus (Bennett et al., 2017) in which one person
directed a tele-operated robot in arranging real-world items, and (3) Minecraft corpus (Narayan-Chen et
al., 2019), in which one person directed another person in collaboratively building structures in a virtual
environment.

Second, we manually searched the corpora (15,000+ utterances in 50+ hours of recordings) for pairs
of human utterances with identical or very similar surface form, and in which one element of the pair
was an ISA and the other pair was not. It was not necessary for the utterance to have been made by the
same person, or even in the same corpus, because any system capable of interpreting ISAs should be
domain-general. We found 20 such pairs in the corpus of 15,000 utterances, which is consistent with
Roque et al. (2020)’s experience of obtaining a very small yield of ISA Schemas when developing them
using crowsourced methods.

Third, having identified such pairs, we manually extracted the context details: scene, dialogue history,
roles, constraints, and whether the intended meaning was indirect or direct. We identified the values of
these parameters through consensus annotations performed by the first three authors of this paper. The
utterance, and the context parameter/value slots, are what make up an ISA Schema. We consider these
ISA Schema to be archetypal in the sense that they represent the set of ISAs in the corpus, including
the ones that are unpaired. Our focus is on the paired ISAs, to investigate the ways that varying context
varies interpretation for a given utterance.

2.2 Reasoner Development

Having thus identified archetypal ISA Schemas, we next developed a computational model of the logical
reasoning required for their interpretation. The model is described in detail in Section 3, and was devel-
oped through the iterative development of logic programs, ensuring that the resulting programs achieved
a complete coverage of the 20 extracted ISA Schemas. An important finding was the extent to which the
knowledge, representations and reasoning requirements were domain-general and not tied to the partic-
ular corpora themselves. Thus, the reasoner we built, encoding these domain-general aspects, serves as
a necessary starting point for others extending this work to cover other corpora or other languages.

We encoded the representations in Answer Set Prolog (ASP), also known as Answer Set Programming,
a declarative logic programming paradigm that has been used for representing knowledge and reason-
ing non-monotonically (Gelfond and Lifschitz, 1990). ASP programs bear a superficial resemblance to
Prolog or to production rule programs, but are different in how they work. In the ASP paradigm, logic
programs are written to represent knowledge about the world. Variables in the program rules are then
logically grounded in the constants representing a particular situation of interest. A solver is then used to
compute answer sets in which the world definitions are logically satisfied (Gelfond and Kahl, 2014). We
used Clingo, an ASP solver (Gebser et al., 2011), for implementing the model described in Section 3.

ASP has several characteristics that make it useful for representing knowledge in problems where
context is important (Baral, 2003), such as with the ISA interpretation problems we are addressing.
First, ASP allows non-monotonic reasoning, or adding knowledge that changes currently-existing beliefs.
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Second, ASP represents two types of negation: classical negation is used to indicate propositions that
are false, and negation-as-failure is used to indicate propositions that are considered false because they
are not currently known to be true. Third, ASP allows for choice rules and cardinality constraints, which
allow for the explicit encoding of world-related constraints to solutions.

One of the purposes of developing this model is to formalize the requirements and products of the
reasoning involved. As described in Section 3, the model requires contextual evidence as input, and
produces a set of candidate intents. The specifics of how this would be integrated into an embodied and
situated intelligent system are beyond the scope of this paper, but while building the model we ensured
that these tasks could in principle be achievable in agents built with contemporary cognitive architectures,
e.g. by Ritter et al. (2019), Scheutz et al. (2019), and Laird (2012).

2.3 Related Work

Current state-of-the-art data-driven approaches to dialogue act classification employ general ML tech-
niques like SVMs, Bayes Nets and CRFs. More recently, deep learning approaches (Liu et al., 2017; Li
et al., 2019) have shown promising results on popular datasets like the Switchboard Corpus. These ap-
proaches model dependencies between neighboring linguistic expressions using topic information as ad-
ditional context. An advantage of these approaches is their generality across a wide range of discourses.
However, a limitation in these approaches is that because their datasets possess a limited conception of
context (i.e., linguistic, or at best, the topics of conversation), they do not learn how situation-specific
aspects can switch the interpretation of an utterance. These systems essentially learn conventionalized
ISAs (i.e., those whose indirect interpretation is always dominant regardless of context). We anticipate
that these approaches can be combined with our approach to help improve the performance for conven-
tionalized ISA, when extensive reasoning may not be needed.

Rule-based approaches use context-sensitive rules to logically derive indirect meanings from surface
forms (Briggs et al., 2017; Williams et al., 2015). These approaches address some of the limitations of the
purely data-driven techniques by explicitly accounting for context. However, they generally do not reason
over multiple aspects of context. Moreover, a single chunked rule (suggested by these approaches) is not
domain-general and does not provide much in way of explanation for the intent recognition process.
Asher and Lascarides (2001) provided a formal account of ISAs but were primarily focused on the
semantics of conventionalized ISAs. Our approach addresses these limitations and is significantly more
elaboration-tolerant in allowing for small factual variations to switch the interpretation.

Plan-based approaches (Perrault and Allen, 1980; Hinkelman and Allen, 1989; Green and Carberry,
1999) reason about ISAs using a set of plan recognition techniques to infer the goals of a speaker. None
of these plan-based approaches systematically enumerate the different types of context, as our approach
does. These approaches do not incorporate the influence of the speaker beliefs about plausibility, pref-
erence and normativity, which we have argued to be important and reflective of assumptions about the
listener’s capability and preferences. That said, these approaches could be integrated with our approach
as one way to infer speaker intent.

The closest line of work is that of Wilske and Kruijff (2006), who proposed an ISA interpretation
architecture for human-robot task-based interactions. They discuss the notions of “feasibility,” “mode
of operation,” and the use of interactional history, which appear to parallel our notions of capability,
contextual role, and dialogue history, respectively. However, like the other existing approaches, they do
not consider how a listener models the speaker’s beliefs. For example, in their work, if a listener considers
an action to be feasible, it will take it as a request and immediately perform the action, independent of
whether or not the speaker believed the listener to be capable.

3 Reasoning for ISA Interpretation

Brown (1980) provided an early descriptive account of ISAs, in which she elaborated on their form, what
is required to choose one form over another, and what is needed for these surface forms to carry indirect
meaning. We propose that these notions are useful not just descriptively to study ISAs as inherently
interesting phenomena, but also computationally as a rubric to aid in understanding and interpreting
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Figure 1: Types of Reasoning required to interpret the utterance “Can you do (action) A?” made from a
Speaker S to a Listener L. To select the indirect meaning of a REQUEST for physical action (instead of
the direct meaning of an ASK for information), L must satisfy four Preconditions. However, L does not
have direct access to S’s intentions and beliefs, and must perform Domain-General Reasoning (using
rules about actions, mutual knowledge, social norms and obligations, and speaker preferences) based
on Contextual Evidence (involving task, role, interactional history, and copresence). Reasoning and
Evidence for Preconditions 3 and 4 follow the same pattern as for Precondition 2.

them. We computationalize the intent preconditions, and incorporate Brown’s descriptive analysis of
the surface form of ISAs into the architecture by allowing the surface form to dictate the necessary
burden of proof required by the reasoners. Our approach, however, extends Brown’s work significantly,
by proposing bridge rules, reasoner-specific rules, and underlying definitions for the reasoners and their
functions. Here, we systematically operationalize the principles outlined by Brown, first by formalizing
the preconditions as rules in the reasoners, and then by using the surface form to influence which rules
are selected for a particular utterance.

Figure 1, which shows an example of the reasoning required for interpretation, serves as an overview
of our approach. The Preconditions of an interpretation are described in Section 3.1, the Domain Gen-
eral Reasoning is described in Section 3.2, and the Contextual Evidence required for that reasoning is
described in Section 3.3.

3.1 Preconditions for Interpretation

As shown in Figure 1, each underlying communicative intent has a set of preconditions that must be met
in order for a speaker to produce a surface form that conveys this intent. The theoretical justification for
this comes from Brown’s descriptive analysis of ISAs, which extends work by Gordon and Lakoff (1975)

As shown in Figure 1, a Request for a physical action (e.g., “Can you do action A?”) intent must satisfy
the following preconditions: (1) that the speaker S intends that the listener L do the action A, (2) that S
believes that L plausibly has the capability to do A, (3) that S believes that L is willing to do A, (4) that
S believes that L is normatively obligated to do A. More generally, these four preconditions also apply
to other intended meanings such as Ask for information, where A is a speech act rather than a physical
action.

Brown also suggested that the specific surface form of the ISA is influenced by the better-knowledge
principle, which states that the direction of information flow is guided by who, S or L, has better knowl-
edge about a particular proposition in the ISA.2 So S may select a “can you do A?” question when S
needs more evidence for satisfying precondition 2, and a “will you do A?” question when S needs more
evidence for satisfying precondition 3.

2See also (De Ruiter, 2012) for additional discussion on “knowledge gradients”.
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3.2 Domain-General Reasoning

As shown in Figure 1, several sets of axioms and commonsense rules are used to test whether precondi-
tions hold in a particular interaction between a speaker and a listener.

First we consider a set of Domain-General Axioms that allow an agent, regardless of situation, to
reason about action and change, mutual knowledge, and linguistic alignment.

One subset of axioms involves Reasoning about Actions and Change. A basic component of the
logical evaluation of ISAs is being able to track and infer things from the ongoing changing context. The
Event Calculus (EC) is especially suited to reasoning about events and provides some axioms that are
domain-independent to help guide this discussion (Kowalski and Sergot, 1989).

Formula Meaning
holds(F, T ) Fluent F holds at time T

happens(A, T ) Ontic Action A occurs at time T
initiated(F, T ) Fluent F is initiated at time T

terminated(F, T ) Fluent F is terminated at time T

To maintain fluents once they are initiated and unless they are terminated, we have the following two
rules:

holds(F,T+1) :- initiated(F,T),time(T).
holds(F,T+1) :- holds(F,T), not terminated(F,T), time(T).

Another subset of axioms involves Reasoning about Mutual Knowledge. One challenge in interpreting
ISAs is understanding not only what the speaker knows, wants and believes, but also what the speaker
thinks the agent (listener) knows, and what the speaker thinks the listener thinks the speaker thinks, and
so on, ad infinitum. Herbert Clark described a heuristic-based mutual knowledge induction schema to
terminate this otherwise infinite line of reasoning (Clark and Marshall, 1981). Under this schema if the
agent knows that a grounds F1 holds, and that these grounds support a proposition F2, and that they
know that the speaker P believes the grounds F1 to hold, then the agent has mutual knowledge with
the speaker P . The agent can establish that if it knows that the speaker P observed the grounds (any
proposition F ), then they are likely to believe it holds. Moreover, if the grounds support a proposition,
then, at least from the agent’s perspective the supported proposition F2 holds as well.

Formula Meaning
observed(P, F, T ) P was seen as observing F at time T

bel(P, F ) P believes fluent F holds
supports(F1, F2) Fluent F1 can provide grounds for flu-

ent F2 to hold
mutual(P, F2) There is mutual knowledge with P

about fluent F

holds(mutual(P,F2),T) :- holds(supports(F1,F2),T), holds(F1,T), holds(bel(P,F1),T),
time(T).

holds(F2,T) :- holds(F1,T),holds(supports(F1,F2),T), time(T).
holds(bel(P,F),T) :- observed(P,F,T), time(T).

Another subset of axioms involves Reasoning about Linguistic Alignment. Under the theory of align-
ment, there is a mapping from an utterance’s surface form (which could be a question, statement, com-
mand, etc.) to a direct meaning (ask, assert, request, etc.) (Asher and Lascarides, 2001). Conventionally,
questions map to Asks, statements map to Asserts and commands map to Requests. Surface forms can
also have indirect meanings and thus we need to be able to distinguish these, which we do via the fol-
lowing alignment axioms:

alignment(question,ask).
alignment(command,request).
alignment(statement,assert).
meaning(M) :- alignment(_,M).
surfaceForm(S) :- alignment(S,_).
direct(U,M) :- hasSurfaceForm(U,S), alignment(S,M), meaning(M), surfaceForm(S),

utterance(U).
indirect(U,request) :- not direct(U,request), utterance(U).
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Finally, a set of axioms we assume but do not explicitly discuss are Uniqueness-of-Names axioms
which ensure that predicate relations do not clash.

Next, we consider the Burdens of Proof required for domain-general reasoning. As a preliminary,
consider the utterance “can you do action A?” There are two types of action underlying this utterance:
ontic action specified as A and referring to the physical act, and epistemic action, which in this case
where the utterance is a question, is to retrieve and respond with information about A.

Formula Meaning
onticAction(U,A) Utterance U contains an ontic action A

epistemicAction(U,M,A,Q) Utterance U contains an epistemic action A that holds when
U has meaning M , and that pertains to proposition Q

uttered(P,U, T ) Interlocutor P uttered U at time T
goal(P,A) Interlocutor P has the goal to do action A

As another preliminary, consider four different lines of reasoning relevant to ISA interpretation –
speaker intent, plausibility, preference, normativity – each of which attempts to connect a set of facts
to whether or not a particular intent holds. Each line of reasoning can be thought of as asking different
questions of the facts of a given situation, as described below. These four lines of reasoning correspond
directly to Brown’s four preconditions for an intent to hold. But since we know from the theory of align-
ment that certain defaults hold we can adjust our burden of proof to make it easier to satisfy the default
(or direct) interpretation than it would to satisfy the indirect interpretation. In other words, for a question
“Can you install linux on your computer?” we can state that the burden to satisfy the interpretation of
this utterance being an Ask for information should be lower than it being a Request for action because
the surface form of it is a question and the direct meaning of questions is typically that of an Ask for
information. One way to specify this default burden is through the use of both classical negation and
negation as failure in nonmonotonic reasoning. We explain these burdens in more detail below.

First, the Speaker Intent Burden of Proof asks the question: does the speaker want the listener to have
the goal of doing action (ontic or epistemic) A? If there is no proof that the speaker did not want the
listener to do the action A, where A is an epistemic action, then the speaker intended for the listener to
interpret the direct meaning M . For example, in the case of the utterance “Can you do action A?” if there
is no proof that the speaker did not want the listener to answer the question about A, then the speaker
likely intends for this to be a question and expects an answer.

holds(intends(P1,U,M),T) :- not -wants(P1,goal(P2,A),T), uttered(P1,U,T),
epistemicAction(U,M,A,_), direct(U,M), holds(speaker(P1),T),
holds(listener(P2),T), time(T), not holds(intends(P1,U,M2),T), indirect(U,M2).

If there is positive evidence that the speaker wanted the listener to do the ontic action A, the speaker
intended for the listener to interpret the indirect meaning M . For the above example, if there is positive
proof that the speaker wanted the listener to perform the physical action A, then the speaker intends for
the action to be done.

holds(intends(P1,U,M),T) :- wants(P1,goal(P2,A),T), uttered(P1,U,T),
onticAction(U,A), indirect(U,M), meaning(M), holds(speaker(P1),T),
holds(listener(P2),T), time(T), not holds(intends(P1,U,M2),T), direct(U,M2).

In addition, we also provide some ancillary rules to help establish that once an action is performed, the
intent that provoked this action is terminated. Moreover, once the intent is formed, the action to execute
this intent is performed.

terminated(intends(P,U,M), T) :- happened(A,T), holds(bel(P,responsive(A,U,M)),T).
happened(A,T+1) :- holds(intends(P1,U,M),T), uttered(P1,U,T), action(U,A).

Second, the Plausibility Burden of Proof asks the question: does the speaker believe that the listener is
capable of doing action A? Burden of proof rules similar to that of Speaker Intent can be formulated for
these other reasoning modes as well. For example, for Plausibility reasoning, the key question is whether
there is mutual knowledge about the capability of the listener.

holds(intends(P1,U,M),T) :- not -holds(mutual(P1,capable(P2,A)),T),
uttered(P1,U,T), epistemicAction(U,M,A,_), direct(U,M), holds(speaker(P1),T),
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holds(listener(P2),T), time(T), not holds(intends(P1,U,M2),T), indirect(U,M2).
holds(intends(P1,U,M),T) :- holds(mutual(P1,capable(P2,A)),T), uttered(P1,U,T),

onticAction(U,A), indirect(U,M), meaning(M), holds(speaker(P1),T),
holds(listener(P2),T), time(T), not holds(intends(P1,U,M2),T), direct(U,M2).

Third, the Preference Burden of Proof asks the question: does the speaker believe that the listener is
willing to do action A? This has rules analogous to the Plausibility Burden of Proof, with willing(P2, A)
replacing capable(P2, A).

Finally, the Normativity Burden of Proof asks the question: does the speaker believe that the listener
is normatively obliged to do action A? This has rules analogous to the Plausibility Burden of Proof, with
obligated(P2, A) replacing capable(P2, A).

3.3 Contextual Evidence

As shown in Figure 1, facts and perceivable situation-specific aspects of a context connect to the burdens
of proof. To represent this, we can specify some optional ancillary rules as well as commonsense knowl-
edge that is associated with each dimension of fact. First, the task-related constraint aspect of context,
which relates to limitations imposed by the nature of the action or of the task, as understood by the in-
teractants. Second, the interactant roles aspect of context, which relates to the duties, expectations, and
obligations of the interactants derived from their respective social or occupational status; whether one
interactant has authority over the other, for example. Third, the interactional history aspect of context,
which relates to the utterances and actions that have been performed in recent memory by the current
interactants. Finally, the co-presence aspect of context, which relates to the objects and participants that
are present when the utterance is made. The first three of these are motivated by dialogue context mod-
els, as for example surveyed by Jokinen and McTear (2009). The last of these is motivated by Clark’s
copresence heuristics (1981).

The contextual evidence is used by domain-general reasoning in the following way. To determine if a
speaker wants (or does not want) the listener to do an action A as analyzed by the speaker intent reasoner,
we will need to consider whether the speaker intends to have the action accomplished in the first place
(i.e., it is the speaker’s goal to get the action done) and whether the speaker would wish to delegate this
action to the listener. We can establish this line of reasoning with the following three rules. The first rule
states what is needed for the speaker to want the listener to do an action. The second and third rules state
how this “want” can be negated.

wants(P1,goal(P2,A),T) :- holds(goal(P1,A),T), holds(delegate(P1,P2,A),T),
holds(mutual(P1,isAvailable(P2)),T), action(_,A).

-wants(P1,goal(P2,A),T) :- -holds(goal(P1,A),T),
holds(mutual(P1,isAvailable(P2)),T), action(_,A).

-wants(P1,goal(P2,A),T) :- -holds(delegate(P1,P2,A),T),
holds(mutual(P1,isAvailable(P2)),T), action(_,A).

The following commonsense default rules specify how contextual evidence contributes to reasoning:

% TASK-RELATED
holds(goal(P,A),T) :- holds(requires(K,A),T), holds(currentTask(K),T),

holds(speaker(P),T), onticAction(_,A).
-holds(goal(P,A),T) :- holds(currentTask(K),T), holds(requires(K,Q),T),

epistemicAction(_,_,A,Q), holds(speaker(P),T).

% ROLE EXPECTATIONS
holds(delegate(P1,P2,A),T) :- holds(role(P1,leader),T), holds(role(P2,follower),T),

onticAction(_,A).
-holds(delegate(P1,P2,A),T) :- holds(role(P1,follower),T), holds(isPresent(P2),T),

onticAction(_,A).
:- holds(role(P,follower),T), holds(role(P,leader),T).

% INTERACTIONAL HISTORY
holds(delegate(P1,P2,A),T) :- happened(A,S), time(S), S<T, holds(speaker(P1),T),

holds(listener(P2),T), onticAction(_,A).

% CO-PRESENCE
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observed(P1,capable(P2,A),T) :- observed(P1,responsive(A,_,_),T),
holds(isPresent(P2),T), onticAction(_,A).

holds(delegate(P1,P2,A),T) :- holds(mutual(P1,capable(P2,A)),T), onticAction(_,A).

The above discussion specified the evidence and reasoning with respect to Precondition 1 (speaker
intent). The Preconditions 2-4 involve analogous reasoning, which is omitted for reasons of space.

4 Example Interaction

The following example shows how speaker observations update the interactional history evidence over
several dialogue turns. Of particular interest is the utterance at time step 7, which has a literal meaning
of an Ask for information but an intended meaning of a Request for action, making it an ISA.

% Initial
% p1 and p2 are present at t=0
initiated(isPresent(p1;p2),0).

% setting the current joint task
initiated(currentTask(arranging),0).

%relevant
initiated(requires(arranging,goForward; arranging,stop;arranging,grabItem;

arranging,turn;arranging,pushItem; arranging,carryItem;arranging, moveToLoc),0).

% p1 observed that p2 is present
observed(p1,isPresent(p2),0).
initiated(supports(isPresent(p2), isAvailable(p2)),0).
observed(p1,instrumentation(p2,arms),0).
intiated(supports(instrumentation(p2,arms), capable(p2,grabItem;p2,pushItem;

p2,carryItem)),0).
initiated(role(p1,leader),0).
initiated(role(p2,follower),0).

% Narrative
% t=1. p1 says: "You’re gonna go forward"
holds(intends(p1,u1,request),1).

% t=2. p1 says: "stop"
happened(goForward,2).
observed(p1,responsive(goForward,u1, request),2).
holds(intends(p1,u2,request),2).

% t=3. p1 says: You’re gonna turn right 90 degrees
happened(stop,3).
observed(p1,responsive(stop,u2,request),3).
holds(intends(p1,u3,request),3).

% t=4. p1 says: Can you grab the second box
happened(turn,4).
observed(p1,responsive(turn,u3,request),4).
holds(intends(p1,u4,request),4).

% t=5. p1 says: Can you push forward
happened(grabItem,5).
observed(p1,responsive(grabItem,u4, request),5).
holds(intends(p1,u5,request),5).

% t=6. p1 says: just go forward
happened(pushItem,6).
observed(p1,responsive(pushItem,u5, request),6).
holds(intends(p1,u6,request),6).

% t=7. p1 says: Can you grab the box?
happened(goForward,7).
observed(p1,responsive(goForward,u6, request),7).
uttered(p1,u7,7).
hasSurfaceForm(u7,question).
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onticAction(u7,grabItem).

5 Conclusion

In this paper we present a novel cognitive scientific model of the reasoning involved in automatically
interpreting Indirect Speech Acts (ISAs), empirically derived from a corpus analysis. The approach
is grounded in existing cognitive science and psycholinguistic theories and provides a domain-general
formal axiomatization of the reasoning needed to uncover the intended meanings of ISAs.

Per the approach, the listener reasons about the speaker’s intentions and beliefs, using contextual
evidence that both the speaker and listener have access to. Unlike previous approaches, we incorpo-
rate reasoning about a speaker’s beliefs about the listeners capabilities, socio-normative standards, and
speaker preferences. Moreover, extending past approaches, we provide a way to incorporate various
aspects of extra-linguistic context into this reasoning process. Following traditions of building formal
representations from corpora, we ensure that our representational choices completely cover utterances
across several task-oriented dialogue corpora that feature ISAs. We focus on those utterances that have
similar surface form, but different meanings due to contextual factors. In future work, we intend ex-
ploring how linguistic norms of directness, politeness and brevity, associated with ISAs (Lockshin and
Williams, 2020; Wen et al., 2020) can be incorporated into the reasoning process either within or as an
extension to Brown’s model. We also plan to compare our approach to existing models in inferring ISAs.

We encode the formalism in a logic-based language for knowledge representation and reasoning. We
use a logical representation for several reasons. First, such a representation allows for explainable pro-
cessing; specifically, a system would be able to justify the “thought-process” behind a given interpreta-
tion. Such explainability allows the human user to detect mistakes in and debug the system, and helps
build trust in the system (Reiter, 2019). Second, such a representation could be used to support online
learning: if a system produced a given interpretation, and it later discovered that the interpretation was
incorrect, it would have an explicit representation that it could use to reason about whether the error
was in its contextual evidence, its domain-general rule application, or its preconditions. Although it may
be argued from a data-driven perspective that if enough of the right type of data were embedded in the
right input vector then BERT might be sufficient, the thrust of this paper is that statistical correlations
do not capture the intricate reasoning that is needed to derive the meaning of ISAs. Furthermore, it is
currently unknown how to perform abductive logical reasoning in a neural net. While there have been
recent attempts in producing neural architectures capable of simple one-hop logical deductions, the type
of reasoning we have explicated here is more sophisticated involving non-monotonic inference, default
reasoning with first-order terms; we chose ASP because these features come out of the box.

Ultimately, we present this model as a standalone scientific contribution in its own right, building on
the work of Brown, Clark, and the others cited in Section 3; a contribution in the fields of cognitive sci-
ence and psycholinguistics. Future work will involve testing this approach on corpora of ISA Schemas
(Roque et al., 2020), and considering additional types of contextual evidence and domain-general rea-
soning.
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