@inproceedings{takatsu-etal-2020-sentiment,
title = "Sentiment Analysis for Emotional Speech Synthesis in a News Dialogue System",
author = "Takatsu, Hiroaki and
Ando, Ryota and
Matsuyama, Yoichi and
Kobayashi, Tetsunori",
editor = "Scott, Donia and
Bel, Nuria and
Zong, Chengqing",
booktitle = "Proceedings of the 28th International Conference on Computational Linguistics",
month = dec,
year = "2020",
address = "Barcelona, Spain (Online)",
publisher = "International Committee on Computational Linguistics",
url = "https://aclanthology.org/2020.coling-main.440",
doi = "10.18653/v1/2020.coling-main.440",
pages = "5013--5025",
abstract = "As smart speakers and conversational robots become ubiquitous, the demand for expressive speech synthesis has increased. In this paper, to control the emotional parameters of the speech synthesis according to certain dialogue contents, we construct a news dataset with emotion labels ({``}positive,{''} {``}negative,{''} or {``}neutral{''}) annotated for each sentence. We then propose a method to identify emotion labels using a model combining BERT and BiLSTM-CRF, and evaluate its effectiveness using the constructed dataset. The results showed that the classification model performance can be efficiently improved by preferentially annotating news articles with low confidence in the human-in-the-loop machine learning framework.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="takatsu-etal-2020-sentiment">
<titleInfo>
<title>Sentiment Analysis for Emotional Speech Synthesis in a News Dialogue System</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hiroaki</namePart>
<namePart type="family">Takatsu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ryota</namePart>
<namePart type="family">Ando</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yoichi</namePart>
<namePart type="family">Matsuyama</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tetsunori</namePart>
<namePart type="family">Kobayashi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 28th International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Donia</namePart>
<namePart type="family">Scott</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nuria</namePart>
<namePart type="family">Bel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chengqing</namePart>
<namePart type="family">Zong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>International Committee on Computational Linguistics</publisher>
<place>
<placeTerm type="text">Barcelona, Spain (Online)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>As smart speakers and conversational robots become ubiquitous, the demand for expressive speech synthesis has increased. In this paper, to control the emotional parameters of the speech synthesis according to certain dialogue contents, we construct a news dataset with emotion labels (“positive,” “negative,” or “neutral”) annotated for each sentence. We then propose a method to identify emotion labels using a model combining BERT and BiLSTM-CRF, and evaluate its effectiveness using the constructed dataset. The results showed that the classification model performance can be efficiently improved by preferentially annotating news articles with low confidence in the human-in-the-loop machine learning framework.</abstract>
<identifier type="citekey">takatsu-etal-2020-sentiment</identifier>
<identifier type="doi">10.18653/v1/2020.coling-main.440</identifier>
<location>
<url>https://aclanthology.org/2020.coling-main.440</url>
</location>
<part>
<date>2020-12</date>
<extent unit="page">
<start>5013</start>
<end>5025</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Sentiment Analysis for Emotional Speech Synthesis in a News Dialogue System
%A Takatsu, Hiroaki
%A Ando, Ryota
%A Matsuyama, Yoichi
%A Kobayashi, Tetsunori
%Y Scott, Donia
%Y Bel, Nuria
%Y Zong, Chengqing
%S Proceedings of the 28th International Conference on Computational Linguistics
%D 2020
%8 December
%I International Committee on Computational Linguistics
%C Barcelona, Spain (Online)
%F takatsu-etal-2020-sentiment
%X As smart speakers and conversational robots become ubiquitous, the demand for expressive speech synthesis has increased. In this paper, to control the emotional parameters of the speech synthesis according to certain dialogue contents, we construct a news dataset with emotion labels (“positive,” “negative,” or “neutral”) annotated for each sentence. We then propose a method to identify emotion labels using a model combining BERT and BiLSTM-CRF, and evaluate its effectiveness using the constructed dataset. The results showed that the classification model performance can be efficiently improved by preferentially annotating news articles with low confidence in the human-in-the-loop machine learning framework.
%R 10.18653/v1/2020.coling-main.440
%U https://aclanthology.org/2020.coling-main.440
%U https://doi.org/10.18653/v1/2020.coling-main.440
%P 5013-5025
Markdown (Informal)
[Sentiment Analysis for Emotional Speech Synthesis in a News Dialogue System](https://aclanthology.org/2020.coling-main.440) (Takatsu et al., COLING 2020)
ACL