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Abstract

Various methods have already been proposed for learning entity embeddings from text descrip-
tions. Such embeddings are commonly used for inferring properties of entities, for recommen-
dation and entity-oriented search, and for injecting background knowledge into neural architec-
tures, among others. Entity embeddings essentially serve as a compact encoding of a similarity
relation, but similarity is an inherently multi-faceted notion. By representing entities as single
vectors, existing methods leave it to downstream applications to identify these different facets,
and to select the most relevant ones. In this paper, we propose a model that instead learns several
vectors for each entity, each of which intuitively captures a different aspect of the considered do-
main. We use a mixture-of-experts formulation to jointly learn these facet-specific embeddings.
The individual entity embeddings are learned using a variant of the GloVe model, which has the
advantage that we can easily identify which properties are modelled well in which of the learned
embeddings. This is exploited by an associated gating network, which uses pre-trained word
vectors to encourage the properties that are modelled by a given embedding to be semantically
coherent, i.e. to encourage each of the individual embeddings to capture a meaningful facet.

1 Introduction

Entity embeddings are vector space representations of the entities from a given domain. Such repre-
sentations are commonly used in cognitive science, where they are referred to as semantic spaces or
conceptual spaces (Gärdenfors, 2000). As another example, the field of Information Retrieval also has a
long tradition of using vector space representations (Salton, 1973; Deerwester et al., 1990). In the field of
Natural Language Processing (NLP), recent years have witnessed an explosion of applications that rely
on entity embeddings. For instance, entity embeddings are now commonly used for injecting background
knowledge (Logan et al., 2019; Lin et al., 2019), and as core representations for recommender systems
(Zhang et al., 2016) and entity-focused search (Van Gysel et al., 2016; Jameel et al., 2017; Zhang et al.,
2019). Entity embeddings are learned using a variety of different inputs, ranging from human similarity
judgements, to text descriptions, web tables and images. Regardless of how they are learned, entity em-
beddings can essentially be viewed as compact encodings of a similarity relation. Indeed, while many
embeddings exhibit various interesting linear regularities, such regularities are the result of the structure
of the similarity relation that is used for learning the embedding (Allen and Hospedales, 2019).

Similarity is inherently multi-faceted, with the importance of different facets being context dependent.
For instance, two movies can be similar because they belong to the same genre or because they are
about the same historic event, among many others. However, these different facets of similarity are not
reflected in the structure of standard entity embeddings. To see why this is sub-optimal, consider the
problem of concept induction: given a small set of entities e1, ..., ek, identify other entities that are of
the same kind. For instance, given the examples Barcelona, Madrid, Alicante, valid completions would
be other Spanish cities. The problem of concept induction underpins many of the applications in which
entity embeddings are used, including knowledge base completion and recommendation. In cases where
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the given set of entities is small, the result will strongly depend on the similarity relation encoded by the
given entity embedding: given a few entities, we can do little else than selecting the nearest neighbors
of their (averaged) entity vectors. However, if we have several embeddings of the considered entities,
each capturing different facets, then we can solve the concept induction task by first identifying the most
relevant facet(s), and thus rely on a form of similarity that is relevant for the given concept.

The problem of learning separate facet-specific embeddings is related to disentangled representation
learning. While this latter problem has already received considerable attention, most existing work has
focused on (semi)-supervised settings, primarily in the visual domain. Unsupervised approaches for
disentangled representation learning generally need strong inductive biases (Locatello et al., 2019). In
the text domain, most work has focused on separating style or sentiment from content. However, one
recent exception is (Alshaikh et al., 2019), where an iterative method is proposed to decompose a given
entity embedding into facet-specific vector spaces. To provide the required inductive bias, they first
determine which properties are captured by the given entity embedding. These properties correspond to
words from text descriptions of the entities, whose occurrence can be predicted from the entity vectors.
To identify words that are likely to describe properties from the same facet, they rely on the intuition that
such properties should have similar word vectors, in a given pre-trained word embedding.

The experimental results from Alshaikh et al. (2019) show that learning facet-specific embeddings is
indeed helpful for concept induction. However, their method is applied to entity embeddings that have
been learned from text descriptions using multi-dimensional scaling (MDS), which has two important
limitations. First, MDS has a quadratic space complexity, which makes it unsuitable for large domains.
Second, and most fundamentally, they crucially rely on the assumption that facets of interest correspond
to linear sub-spaces of the initial entity embedding. As another limitation of their method, the assumption
that facets can be identified with clusters in a word embedding space seems too strong. While words that
describe properties of the same kind (e.g. different names of movie genres) are indeed often clustered
together in a word embedding, the range of words that are relevant to a given facet is usually more varied
(e.g. adjectives such as scary are relevant when modelling genre, but this word may not be clustered
together with genre names). To address these issues, we propose a method that directly learns multi-
facet entity embeddings from text descriptions. To this end, we use a mixture-of-experts formulation
(Jacobs et al., 1991), in which the experts essentially correspond to GloVe models (Pennington et al.,
2014), each focusing on a subset of the vocabulary. The decision on which words are modelled by which
experts is made by a so-called gating network, which uses pre-trained word vectors as input. In this way,
we can capture the intuition that words which are relevant to the same facet typically have similar word
embedding representations, without having to assume that all such word appear in a single cluster.

2 Related Work

Conceptual spaces. The idea that a single vector space is insufficient for modelling similarity has
been widely studied in cognitive science. In particular, this idea is closely related to the distinction
between so-called integral and separable dimensions, which plays a central role in cognitive models of
categorisation (Gärdenfors, 2000). Dimensions, in this context, refer to elementary cognitive features.
Two dimensions are intuitively separable if they can be considered in isolation (e.g. size and hue), and
integral otherwise (e.g. hue, saturation, and luminosity are jointly perceived as colour). Psychological
studies have shown that the way in which humans generalize from examples is affected by the nature
of the underlying dimensions (Grau and Nelson, 1988; Nosofsky and Palmeri, 1996). The theory of
conceptual spaces (Gärdenfors, 2000) is a popular cognitive model which takes this distinction between
integral and separable dimensions into account by organizing dimensions into domains. Dimensions
from the same domain are assumed to be integral, whereas those from different domains are assumed to
be separable. Each domain is associated with a metric space. Given a conceptual space, the dissimilarity
between two objects is determined by (i) computing their (usually Euclidean) distance in each of the
domain-specific spaces and (ii) taking a weighted average of these distances. This is in accordance with
empirical findings, which suggest that Euclidean distance is predictive of human similarity judgements
in the case of integral dimensions, whereas such judgements are a function of Manhattan distance in the
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case of separable dimensions; we refer to (Gärdenfors, 2000) for more details.

The problem of learning conceptual spaces from data has only received limited attention. Inspired
by conceptual spaces, Derrac and Schockaert (2015) introduced a method for structuring a given entity
embedding using interpretable (but non-orthogonal) dimensions. This method was used in the approach
by Alshaikh et al. (2019), which consists of (i) identifying interpretable dimensions in the given entity
embedding, (ii) clustering the words describing these dimensions, (iii) identifying the linear subspace
that best corresponds to the most dominant cluster, (iv) repeating the same method on the orthogonal
complement of this subspace. Somewhat related, Rothe and Schütze (2016) propose a supervised method
to decompose word embeddings into subspaces that capture particular aspects of word meaning, such as
sentiment polarity or part-of-speech. The idea of decomposing a word embedding space into sub-spaces
is also central to the method from (Ali et al., 2019), which is aimed at distinguishing synonyms from
antonyms. Within a broader context, Banaee et al. (2018) propose a method to group numerical features
into domains, with the aim of generating better linguistic descriptions of numerical data.

Disentangled representation learning. The aim of disentangled representation learning is to obtain
embeddings, often referred to as latent codes in this context, whose individual dimensions have a clear
interpretable meaning. While this is related to our aims in this paper, it should be noted that our focus
is on finding sub-spaces that capture different facets of similarity, regardless of whether the individual
dimensions are interpretable. Disentangled representation learning has mainly been studied in the con-
text of images, where having a disentangled representation allows one to manipulate images in a given
prescribed way (e.g. generating an image showing what a person would look like when wearing glasses).
Apart from this particular use case, disentangled representations have also said to lead to more robust
models (e.g. being less susceptible to adversarial attacks), and help in transfer learning and few shot
learning settings. Existing models mostly correspond to variants of Generative Adversarial Networks,
e.g. InfoGAN (Chen et al., 2016), or variational autoencoders, e.g. (Higgins et al., 2017; Kim and Mnih,
2018; Chen et al., 2018). Such models essentially try to find independent factors of variations in the
dataset, which is most successful if there is a lot of regularity in the dataset. For instance, a typical appli-
cation is to learn latent codes of facial images, where factors such as gender, the presence of glasses, or
the rotation of the head can be discovered. When learning entity embeddings from text, however, similar
strategies tend to be far less successful. In preliminary experiments with InfoGAN, for instance, we were
not able to identify any meaningful dimensions for the datasets considered in this paper. In other settings,
disentangled representation learning for text has proven more useful. For instance, several authors have
focused on separating style (or sentiment) from content (John et al., 2019). In general, most existing
approaches for text use some kind of supervision signal, such as aspect-specific similarity judgements
(Jain et al., 2018) or sentiment labels (He et al., 2017).

3 Model Description

The main idea underpinning the mixtures-of-experts (MoE) model (Jacobs et al., 1991) is to train a neural
network by (i) learning a soft partition of the feature space and (ii) training a separate neural network for
each partition class. The individual neural networks, referred to as experts, are thus specialized towards
the examples from the corresponding partition class. These experts are jointly trained with a so-called
gating network, which is used to determine the (soft) partition. To apply this model to our setting, we
thus need to determine the structure of the gating network and the nature of the experts.

Our aim is to learn facet-specific entity embeddings from the bag-of-words representations (BoW) of
a given set of entities. To apply the MoE model to this problem setting, we need an embedding method
that can be formulated as a classification or regression problem. Moreover, to allow for an effective
gating network, we need the ability to efficiently determine how well different properties are captured by
the different entity embeddings. To address both issues, we build on the GloVe word embedding model
(Pennington et al., 2014), which is a common choice for learning entity embeddings from BoW repre-
sentations (Jameel and Schockaert, 2016). Using the notations and terminology of entity embeddings,
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the GloVe model can be formulated as follows:

G =

m∑
j=1

Gj Gj =
∑

i:xij>0

f(xij)
(
ei · w̃j + bi + b̃j − log xij

)2
f(xij) =

( xij
100

)0.75
(1)

Here ei represents the embedding of entity ei, w̃j is a representation of the word wj , bi and b̃j are bias
terms, xij is the number of occurrences of wj in the BoW representation of ei, and the weight f(xij)
is aimed at reducing the impact of rare words. The term Gj captures how well the entity embedding
is modelling the word wj . Similar to Derrac and Schockaert (2015), we found that words which are
modelled well, i.e. for which the loss term Gj is low, tend to correspond to semantically meaningful
properties. The main idea of our method is to learn multiple GloVe embeddings (i.e. experts), where
each embedding will be specialized towards a subset of all words. The key challenge is to train these
embeddings such that the properties captured by a given embedding form a semantically meaningful
facet or domain. For example, when learning a representation of movies, we would expect to see one
GloVe expert that focuses on genre (e.g. capturing words such as horror, zombie or funny).

What makes this problem particularly challenging is that properties from different facets are often
correlated (e.g. particular actors may be strongly associated with a particular movie genre). This is in
accordance with the theory of conceptual spaces, but it means that a strong inductive bias is needed to
learn these representations. Following Alshaikh et al. (2019), we rely on pre-trained word vectors to
provide this bias. In particular, we rely on the assumption that whenever a word is related to a given
facet, words with similar embeddings tend to be related as well. This assumption is less strong than the
assumption from (Alshaikh et al., 2019), where each facet was assumed to correspond to a single cluster.

3.1 Model Formulation
If we ignore the weight f(xij), the relationship between least squares regression and the Gaussian distri-
bution makes it easy to see that the GloVe model maximizes the likelihood of the data X (i.e. the matrix
of co-occurrence counts xij) in accordance with the following probabilistic model:

L(X) =
∏
i,j

G(xij | ei · w̃j + bi + b̃j , σ
2)

where G is the Gaussian distribution and the variance σ2 is an arbitrary strictly positive constant. In our
MoE model, each expert makes a different prediction for the mean ei · w̃j + bi + b̃j . Let us write eik for
the embedding of entity ei by the kth expert. Similarly, w̃k

j corresponds to the embedding of word wj ,
according to this expert, while bki and b̃kj are the associated bias terms. We write K for the total number
of experts. Furthermore, let us write g(k, j) for the probability that word wj should be assigned to the
kth expert. The aim of our model is then to maximize the following likelihood:

L(X) =
∏
i,j

∑
k

g(k, j)G(xij | eki · w̃k
j + bki + b̃kj , σ

2)

The probability g(k, j) will be parameterized by a neural network, called the gating network. In par-
ticular, let (yj1, ..., y

j
K) = φ(xj) be the output of a multi-layer perceptron, where the input xj is the

pre-trained word vector for wj . The probabilities g(k, j) are then obtained using softmax:

g(k, j) =
exp(yjk)∑K
i=1 exp(y

j
i )

(2)

Note that the decision on which expert should be used for the prediction of xij only depends on the word
wj in our model. The aim of the gating network is thus to find a meaningful grouping of the words
from the BoW representations. Another possibility would be to design the gating network such that
the entity ei is taken into account as well. In principle, this would be useful to determine for each of the
learned facets, which entities can have a meaningful representation in that facet. However, in preliminary
experiments we were not able to achieve better results with such an approach.
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Dataset Entities Attribute Classes

Locations 209121
CORINE land cover level 1 (CL1) 5
CORINE land cover level2 (CL2) 15
CORINE land cover level3 (CL3) 44

Movies 13978
Plot keywords (KeyW) 100
Genre 23
Age Ratings (AR) 6

Place types 1383
Foursquare categories (Fours.) 9
Geonames categories (Geo.) 7
OpenCYC categories (OpenC.) 20

Dataset Entities Attribute Classes

Buildings 3721 Country 2
Administrative Location(AL) 2

Wikipedia 100000

Semantic Type (SM) 13
Movies: Language (MoL) 3
Movies: Color (Mocl) 2
Movies: Country (MoC) 8
Music: Country (MuC) 9
Music: Genre (MuG) 13
Business: Country (BC) 3
Business: Legal-form (BLF) 7
Human: Gender (HG) 2
Human: Country of citizenship (HC) 2

Table 1: Overview of considered datasets.

3.2 Parameter Estimation
Our aim is now to train the parameters of the gating network and those of the different GloVe experts.
We rely on Expectation Maximization (EM) for this purpose.

E-step: For each context word wj , we estimate a probability distribution over experts, which is based
on how well these experts are currently modelling this word. In particular, let us write ε(k,j) for the error
term associated with wj and the kth expert, i.e.:

ε(k,j) =
∑

i:xij>0

(
eki · w̃k

j + bki + b̃kj − log xij

)2
Note that in contrast to the standard GloVe formulation, we do not use the weight f(xij), as we found
this weighting strategy not to be helpful in our setting, and omitting it simplifies the formulation of the
model. The probability S(k,j) that wj should be assigned to the kth expert is then estimated as follows:

S(k,j) =
exp(−ε(k,j))∑
i∈K exp(−ε(i,j))

These probabilities S(k,j) will be used as the supervision signal for training the gating network.
M-step: We train the gating network by minimizing the cross-entropy between the probabilities S(k,j)
obtained from the E-step and the probabilities g(k, j) predicted by the gating network:

Egate = −
m∑
j=1

K∑
k=1

S(k,j) ln g(k, j)

with g(k, j) defined as in (2). For each expert, the corresponding parameters are learned by using the
following weighted version of the standard GloVe loss (without the weights f(xij):

G(k) =

m∑
j=1

∑
i:xij>0

g(k, j)
(
eki · w̃k

j + bki + b̃kj − log xij

)2
In the first iteration of the EM method, the parameters are initialised by training a standard GloVe em-
bedding. In subsequent iterations, we use the parameters from the previous iteration for initialization.

4 Experiments

We experimentally analyze the performance of the proposed mixture-of-experts (MoE) model. Our main
focus is on showing that learning facet-specific embeddings is useful compared to learning standard
embeddings. We also compare our method with the approach from Alshaikh et al. (2019).

Datasets. We use the Movies and Place types datasets from Derrac and Schockaert (2015) and the
Buildings dataset from Alshaikh et al. (2019). These datasets respectively contain BoW descriptions of
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movies (obtained from reviews), place types (obtained from Flickr tags) and buildings (obtained from
Wikipedia articles). Each of these datasets is associated with a number of classification problems, which
are listed in Table 1. We refer to the original papers for more details. The aforementioned datasets are all
relatively small, since they were used in combination with multi-dimensional scaling in past work. We
also evaluate our method on two larger datasets. First, we use a dataset from Jeawak et al. (2019), referred
to as Locations, in which the entities correspond to geographic locations across the UK and the BoW
representations are composed of the tags that were assigned to Flickr photos near these locations. Noting
that Flickr tags often correspond to concatenations of different words, we have tokenized these tags
using Wordninja (Anderson, 2019), which splits terms based on English Wikipedia unigram frequencies.
Subsequently we discarded stop words, using NLTK (Bird and Loper, 2004), as well as words for which
we do not have a pre-trained word vector. The classification task associated with this dataset is to predict
the CORINE1 land cover classes at level 1 (5 classes), level 2 (15 classes) and level 3 (44 classes).
Second, we compiled a new dataset from the English Wikipedia. In particular, we selected the 100 000
Wikipedia concepts with the longest articles, which approximately corresponds to those concepts whose
Wikipedia article contains more than 200 words, after removing stop words and words that appear less
than 10 times in the collection. As classification tasks for the Wikipedia dataset, we first consider the
problem of predicting the Wikidata semantic type of the Wikipedia entities. In particular, we identified
13 semantic types that occur sufficiently frequently, each having at least 2000 instances in our collection.
In addition to these semantic types, we extracted nine attributes from Wikidata, for which a value was
specified for a sufficient number of instances: three attributes for movie entities and two attributes for
each of music, business and human. The considered classification problems are listed in Table 1 2.

Methodology. For the classification experiments with the Buildings and Place type datasets, we used 2/3
of the labelled data for training and 1/3 for testing, using the same splits as Alshaikh et al. (2019). For
tuning, we use 3-fold cross-validation over the training data. For the other datasets, where we have more
labeled data, we split the examples into 60% for training, 20% for tuning and 20% for testing. In the case
of the Movies dataset, we again used the same split as Alshaikh et al. (2019). To learn the embeddings
with our proposed model, we train k experts, choosing k from {4, 5, 10} based on the tuning data. In all
cases, we fix the total number of dimensions of all embeddings to 100 (e.g. if k = 4 then each expert
learns a 25-dimensional embedding). As input to the gating network, we use a 50-dimensional GloVe
word embedding, which was pre-trained on the English Wikipedia. We run the EM algorithm for five
iterations, which we found sufficient for the experts to converge. In each iteration, we train the gating
network for 20 epochs and the experts for 10 epochs, using AdagradOptimizer with a learning rate of
0.05 and mini-batch size of 1000. Since the BoW representations from the Wikipedia dataset were highly
sparse, we used a version of GloVe with negative samples, following (Jeawak et al., 2019).

Baselines. Our main baseline is the standard GloVe model, as in (1), which was found by Jameel and
Schockaert (2019) to produce highly competitive entity embeddings, compared to a wide range of other
methods. We also experimented with methods based on variational autoencoders, including the Neural
Variational Document Model (Miao et al., 2016), but we were not able to obtain competitive results in
this way. We fix the number of dimensions in all entity embeddings to 100. We also compare our MoE
method against the approaches from Alshaikh et al. (2019), which are referred to as IncAggGloVe and
IncHDBGloVe. These methods differ only in the clustering algorithms that are used for identifying facets,
which are Agglomerative Hierarchical Clustering and HDBSCAN, respectively. Note that in contrast to
(Alshaikh et al., 2019), where MDS was used, we apply these methods to a 100-dimensional GloVe
embedding, to allow for a more direct comparison. However, we found that these methods were not able
to scale to the new Locations and Wikipedia datasets, even when using GloVe for the base embedding,
hence we can only consider them for Movies, Place types and Buildings.

Evaluation tasks. We evaluate the quality of the learned embeddings based on the performance of a
number of different classifiers which use these embeddings as input. In particular, we followed the

1http://www.eea.europa.eu/data-and-maps/data/corine-land-cover-2006-raster-2
2The source code is available online at

https://github.com/rana-alshaikh/MoEGloVe
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Place types Movies Buildings

Fours. Geo. OpenC. KeyW. Genre AR Country AL.

D
T

1

GloVe 0.34 0.23 0.26 0.22 0.32 0.39 0.46 0.30
IncHDBGloVe 0.35 0.26 0.29 0.24 0.30 0.39 0.48 0.44
IncAggGloVe 0.35 0.26 0.29 0.23 0.37 0.40 0.52 0.49
MoEGloVe 0.45 0.27 0.30 0.26 0.40 0.44 0.48 0.45

D
T

3

GloVe 0.47 0.29 0.30 0.24 0.37 0.40 0.50 0.41
IncHDBGloVe 0.50 0.24 0.31 0.24 0.35 0.40 0.52 0.47
IncAggGloVe 0.44 0.26 0.29 0.23 0.37 0.39 0.53 0.49
MoEGloVe 0.59 0.31 0.34 0.26 0.40 0.45 0.52 0.48

SV
M

GloVe 0.75 0.39 0.37 0.17 0.47 0.33 0.64 0.45
IncHDBGloVe 0.58 0.27 0.33 0.20 0.44 0.37 0.55 0.51
IncAggGloVe 0.62 0.26 0.31 0.22 0.46 0.40 0.60 0.50
MoEGloVe 0.76 0.45 0.40 0.26 0.47 0.47 0.68 0.55

K
N

N

GloVe 0.70 0.40 0.38 0.13 0.23 0.30 0.56 0.54
IncHDBGloVe 0.58 0.38 0.38 0.16 0.33 0.30 0.57 0.52
IncAggGloVe 0.68 0.32 0.40 0.17 0.32 0.35 0.57 0.50
MoEGloVe 0.73 0.42 0.42 0.27 0.47 0.48 0.64 0.57

G
au

ss
ia

n GloVe 0.71 0.48 0.43 0.19 0.50 0.42 0.62 0.56
IncHDBGloVe 0.62 0.38 0.50 0.22 0.44 0.42 0.62 0.56
IncAggGloVe 0.64 0.43 0.48 0.22 0.48 0.41 0.62 0.56
MoEGloVe 0.74 0.50 0.49 0.24 0.54 0.47 0.66 0.56

Table 2: Classification performance in terms of F1 score for Place types, Movies and Buildings.

approach from Alshaikh et al. (2019), which uses four types of classification methods. The first method
is to train a (linear) SVM classifier on each of the different facet-specific spaces. The predictions of
these classifiers are then used as input to a logistic regression meta-classifier. For the GloVe baseline,
we simply train an SVM classifier on the full space. Note that this approach is motivated by the theory
of conceptual spaces, which suggests that entities have to be compared using Euclidan distance within
domain-specific spaces, with overall similarity then determined as a weighted average of the domain-
specific similarities. The second method is based on the same view, but instead of using SVMs we use
K nearest neighbors (KNN). The value of K was chosen from {1, 3, 5} based on the tuning data. A
third method, which is also loosely inspired by conceptual spaces, it to estimate a Gaussian distribution
(with a diagonal covariance matrix), in each of the facet-specific spaces. To classify a test example, we
then add up the log-probabilities obtained from the facet-specific Gaussians. The example is predicted
as positive if the result is above a given threshold, which is estimated using maximum likelihood. The
advantage of this method is that we do not need to train a separate meta-classifier. Intuitively, if a given
facet is not relevant for the category which we are trying to predict, we can expect the corresponding
Gaussian to have a high variance, which means that it will have a low impact on the final result. The
fourth classification method is based on low-depth decision trees. The aim is to evaluate to what extent
important semantic features can be modelled as vectors. In particular, we first select the N words which
are best modelled in the vector space (for each expert), i.e. we choose the words j for which the error
term ε(k,j) is minimal. To train the decision trees, we then represent each entity e by the feature vector
(e · w̃k

1 , ..., e · w̃k
N), where we write wi for the ith word that was selected. For the GloVe baseline, we

set N = 2000. For the other methods, we select N = 200 words from each of the facet-specific spaces.
We report the results for decision trees of depth 1 (i.e. trees consisting of a single node) and depth 3. A
strong performance on this task suggests that the spaces can be described in terms of interpretable linear
features, similar to how conceptual spaces are described in terms of quality dimensions.

Results. The results are summarized in Table 2 for the three smaller datasets and in Table 3 for the two
larger datasets. As can be seen from the tables, our model outperforms each of the baselines. Moreover,
the improvement over GloVe is substantial in many cases, which clearly shows the usefulness of learning
multiple facet-specific vector spaces, rather than a single higher-dimensional space. Our model also
outperforms IncAgg and IncHDB, in addition to being much more scalable. In fact, surprisingly, the
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Wikipedia Locations

SM. MoL. Mocl. MoC. MuC MuG BLF BC HG HC CL1 CL2 CL3
D

T
1 GloVe 0.19 0.37 0.33 0.18 0.15 0.09 0.16 0.30 0.32 0.35 0.24 0.10 0.05

MoEGloVe 0.23 0.42 0.42 0.18 0.18 0.08 0.15 0.34 0.43 0.49 0.31 0.13 0.06

D
T

3 GloVe 0.23 0.38 0.31 0.19 0.16 0.10 0.17 0.31 0.33 0.36 0.30 0.11 0.05
MoEGloVe 0.28 0.46 0.43 0.21 0.19 0.10 0.17 0.33 0.36 0.43 0.31 0.13 0.07

SV
M GloVe 0.49 0.53 0.48 0.20 0.17 0.08 0.11 0.32 0.44 0.66 0.15 0.07 0.01

MoEGloVe 0.61 0.62 0.51 0.25 0.27 0.12 0.18 0.47 0.47 0.64 0.30 0.10 0.06

K
N

N GloVe 0.49 0.33 0.56 0.17 0.14 0.07 0.12 0.29 0.50 0.52 0.29 0.21 0.17
MoEGloVe 0.60 0.50 0.55 0.25 0.25 0.11 0.16 0.39 0.52 0.58 0.39 0.24 0.21

G
au

ss GloVe 0.51 0.52 0.55 0.25 0.24 0.11 0.16 0.19 0.49 0.13 0.30 0.11 0.10
MoEGloVe 0.57 0.59 0.57 0.27 0.26 0.12 0.20 0.18 0.51 0.16 0.33 0.17 0.14

Table 3: Classification performance in terms of F1 score For Wikipedia and Locations.

MOVIES

Movie 5NN in full space 5NN in the Genre facet

Troy 2004 [Drama,
Adventure]

Alexander 2004 [Action, Drama, Adventure, Biography, War,
Romance, History], Hum 1991 [Action, Drama, Crime, Fam-
ily], Pig 2010 [Horror], Kingdom of Heaven 2005 [Action,
Drama, Adventure, War, History], Mac 1992 [Drama]

Alexander 2004 [Action, Drama, Adventure, Biography, War, Romance,
History], King Arthur 2004 [Action, Drama, Adventure, War, History],
Kingdom of Heaven 2005 [Action, Drama, Adventure, War, History],
Lawrence of Arabia 1962 [Drama, Adventure, Biography, War, History],
Master and Commander, The Far Side of the World 2003 [Action,
Drama, Adventure, War]

Iron Man 2008 [Ac-
tion, Adventure, Sci-
Fi]

Fantastic Four 2005 [Action, Adventure, Fantasy, Sci-Fi,
Short], Hulk 2003 [Action, Sci-Fi], U 2006 [Animation, Fam-
ily, Music, Musical], Seven 1979 [Action, Drama],Ali 2001
[Drama, Biography, Sport]

Hulk 2003 [Action, Sci-Fi], Aliens 1986 [Action, Adventure, Thriller,
Sci-Fi], Terminator 3-Rise of the Machines 2003 [Action, Thriller, Sci-
Fi], X2 2003 [Action, Adventure, Thriller, Sci-Fi], Star Trek Nemesis
2002 [Action, Adventure, Thriller, Sci-Fi]

X-Men 2000 [Action,
Adventure, Sci-Fi]

X2 2003 [Action, Adventure, Thriller, Sci-Fi], Fantastic Four
2005 [Action, Adventure, Fantasy, Sci-Fi, Short], Spider-Man
2 2004 [Action, Adventure, Fantasy], Nu 2003 [Drama, Short],
ATL 1999 [Comedy, Drama, Crime, Music, Romance]

Superman II 1980 [Action, Sci-Fi], Thunder 1983 [Action, Drama,
Crime], X2 2003 [Action, Adventure, Thriller, Sci-Fi], Iron Man 2008
[Action, Adventure, Sci-Fi], Terminator 3, Rise of the Machines 2003
[Action, Thriller, Sci-Fi]

The Sound of Music
1965 [Drama, Biog-
raphy, Family, Music,
Musical, Romance]

Mamma Mia! 2008 [Comedy, Music, Musical, Romance],
Show 2003 [Action, Comedy, Crime, Thriller], Across the
Universe 2007 [Drama, Music, Musical, Romance], Pig 2010
[Horror], Its a Wonderful Life 1946 [Drama, Family, Fantasy]

Willy Wonka and the Chocolate Factory 1971 [Family, Fantasy, Music,
Musical], Casablanca 1942 [Drama, War, Romance], Its a Wonderful
Life 1946 [Drama, Family, Fantasy], Singin in the Rain 1952 [Comedy,
Music, Musical, Romance], A Christmas Story 1983 [Comedy, Family]

Mystic River 2003
[Drama, Crime,
Thriller, Mystery]

Now 1965 [Music, Short, Documentary], Training Day 2001
[Action, Drama, Crime, Thriller], Mac 1992 [Drama], 21 2008
[Drama, Crime, Thriller], Blue Velvet 1986 [Drama, Crime,
Thriller, Mystery]

21 2008 [Drama, Crime, Thriller], Atonement 2007 [Drama, War, Mys-
tery, Romance], Jarhead 2005 [Drama, Biography, War], The Door
2012 [Horror, Drama, Family, Fantasy, Thriller, Mystery, Sci-Fi, Short],
Red Dragon 2002 [Crime, Thriller]

Table 4: Examples of the Nearest Neighbours from the Movies dataset.

IncAgg and IncHDB perform worse than the GloVe baseline in several cases. In contrast, as was reported
by Alshaikh et al. (2019), when MDS is used as the base embedding, these methods consistently improve
on this base embedding, although they still do not reach the performance of our MoEGLoVe model. A
detailed comparison with MDS based representations is provided in the appendix.

While we are not primarily concerned with the overall performance of the classifiers, it is interesting
to note that the performance of the SVM, KNN and Gaussian classifiers are broadly comparable. The
decision trees perform worse overall, as could be expected. However, the relative performance of the
decision trees, compared to the other classifiers, can reveal which categories can be modelled in terms of
the most dominant linear features, i.e. the vectors wk

i with the lowest associated error term ε(k,j). Such
features can intuitively play the role of quality dimensions in applications (Derrac and Schockaert, 2015).
The results suggest that the land cover categories in the Locations domain correspond to such dominant
linear features. In contrast, for the Foursquare categories, the performance of the decision trees is much
worse than that of the other classifiers, showing that methods that rely on learned quality dimensions
would not model these categories well.

Qualitative Analysis. To illustrate the usefulness of facet-specific vector spaces, Table 4 shows the
nearest neighbors of some movies (i) in the full space and (ii) in one of the facet-specific spaces, which
is intuitively specialized towards genre. While several of the nearest neighbors in the full space have a
similar genre, we can also see many other neighbours (shown in red). In contrast, the neighbors in the
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MOVIES

Expert 0: animation, soundtrack, studio, remas-
tered, recording, feature, graphics, audio, produc-
tions, animated, series, musical, artwork, compi-
lation, version, featuring, interactive, playstation,
artists, premiere, theatrical, cinematography, pro-
duced, animations, entertainment, unreleased

Expert 1: drama, comedy, hollywood, actor, actress, age,
teen, children, dramas, mother, remake, horror, death, sitcom,
opera, tale, princess, bollywood, shakespeare, wife, broad-
way, television, fiction, thriller, stories, comedies, romance,
family, sex, live, series, documentary, animated, romantic ,
adventure, mystery, father, fantasy, crime, sequel, reality

Expert 2: manuscript, century, medieval, poet,
testament, writings, biography, author, memoirs,
nineteenth, treatise, philosopher, literature, best-
selling, texts, historical, poem, preface, history,
narratives, romanticism, allegorical, book, cen-
turies, autobiography, historians, thinkers

WIKIPEDIA

Expert 0: companies, applications, technologies,
firms, equipment, tools, manufacturers,software,
motor, computers, management, options, auto, au-
tomaker, toyota, product, sale, microsoft, user, buy.

Expert 1: music, album, song, radio, film, pop, television,
hip-hop, soundtrack, airplay, movies, recordin, tv, billboard,
compilation, bbc, chart, musical, band, aired, broadcast, uhf,
channel,comic, operas, bands, studio, tunes, indie, broadcasts

Expert 2: criminal, crimes, accused, ac-
tivists, communist, ethnic, opposition, demo-
cratic, palestinian, communists, serbs, regime,
allies, yugoslavia,israeli, leftist, anti, political

PLACE TYPES

Expert 0: italy, thailand, temple, sri, inn, york-
shire, terrace, buddhist, thai, indian, beach, wine,
india, cook, malaysia, condo, durham, turkey, vil-
lage, restaurant, eat, tofu, dining, cornwall

Expert 1: ferrari, cessna, jaguar, falcon, musica, mexicana,
guitarra, banda, porsche, flight, grupo, airshow, supercars,
guitarist, coupe, supercar, peugeot, beetle, jazz,benz, mus-
tang, flamenco, mercedes, amphibian.

Expert 2: hair, costumes, cute, kitten, kitty,
stockings, dolls, doll, toys, costume, makeup,
fashion, nail, puppy, lipstick, teddy, lingerie,
smile, sexy, zombie, retro, nails, blouse

Table 5: Examples of the facets from the Movies, Wikipedia and Place types datasets.

Figure 1: Projection of the full space and two 10-dimensional facets of the Locations dataset.

genre-specific space all have a similar genre. In Table 5 we show, for a number of experts, which words
are assigned to them by the gating network, i.e. for which words the probability g(k, j) is highest. For the
Movies domain, for instance, we can see that one expert focused on technical aspects of the movies (e.g.
soundtrack, graphics, cinematography), while the second expert focused on genre, and the third expert
focused on the particular genre of historical movies. For the Wikipedia and Place types datasets, which
cover a wider range of entities, the discovered facets are mostly thematic. For instance, for the Wikipedia
dataset, we found facets related to companies, music and politics. Finally, Figure 1 visually shows the
different aspects of similarity that are captured by two experts for the Locations dataset. Specifically, the
figure visualizes how similar different parts of the UK are to the target location, in Liverpool. For one
expert (Facet A), the most similar regions correspond to other urban areas (including London, Southamp-
ton and Newcastle). On the other hand, the second expert (Facet B) has identified coastal areas across the
UK as the most similar regions. While this latter facet may be important in some application contexts, it
is clearly not well-captured in the full space (i.e. the standard GloVe embedding).

5 Conclusion

This paper has introduced a method for jointly learning a number of facet-specific low-dimensional en-
tity embeddings. To the best of our knowledge, this is the first approach for learning such representations
that is both scalable and unsupervised. We have presented experimental results which show that learning
facet-specific spaces can be highly beneficial. While we have focused on bag-of-words input representa-
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tions in this paper, in future work it would be interesting to see how similar strategies could be applied
to document embedding strategies based on BERT (Devlin et al., 2019), or related language models.
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Appendices
A Comparison with MDS Based Representations

Table 6 shows a comparison between the methods from this paper and the methods, based on MDS,
considered by Alshaikh et al. (2019). For a fair comparison, we relearned the MDS for the movies
dataset using only the words that have pre-trained word embedding as they are far less than the number
of the total vocabulary.

Place types Movies Buildings
Fours. Geo. OpenC. KeyW. Genre AR Country AL.

D
T

1

MDS 0.34 0.26 0.26 0.26 0.38 0.43 0.47 0.47
GloVe 0.34 0.23 0.26 0.22 0.32 0.39 0.46 0.30
IncAggMDS 0.45 0.30 0.30 0.25 0.40 0.47 0.50 0.50
IncHDBMDS 0.43 0.26 0.28 0.25 0.38 0.40 0.46 0.46
IncHDBGloVe 0.35 0.26 0.29 0.24 0.30 0.39 0.48 0.44
IncAggGloVe 0.35 0.26 0.29 0.23 0.37 0.40 0.52 0.49
MoEGloVe 0.45 0.27 0.30 0.26 0.40 0.44 0.48 0.45

D
T

3

MDS 0.52 0.27 0.32 0.27 0.43 0.47 0.47 0.46
GloVe 0.47 0.29 0.30 0.24 0.37 0.40 0.50 0.41
IncAggMDS 0.58 0.34 0.34 0.27 0.41 0.47 0.54 0.52
IncHDBMDS 0.57 0.26 0.31 0.26 0.39 0.44 0.49 0.50
IncHDBGloVe 0.50 0.24 0.31 0.24 0.35 0.40 0.52 0.47
IncAggGloVe 0.44 0.26 0.29 0.23 0.37 0.39 0.53 0.49
MoEGloVe 0.59 0.31 0.34 0.26 0.40 0.45 0.52 0.48

SV
M

MDS 0.65 0.31 0.35 0.25 0.43 0.45 0.38 0.39
GloVe 0.75 0.39 0.37 0.17 0.47 0.33 0.64 0.45
IncAggMDS 0.73 0.33 0.37 0.23 0.47 0.45 0.52 0.51
IncHDBMDS 0.65 0.30 0.36 0.23 0.47 0.47 0.51 0.51
IncHDBGloVe 0.58 0.27 0.33 0.20 0.44 0.37 0.55 0.51
IncAggGloVe 0.62 0.26 0.31 0.22 0.46 0.40 0.60 0.50
MoEGloVe 0.76 0.45 0.40 0.26 0.47 0.47 0.68 0.55

K
N

N

MDS 0.65 0.31 0.35 0.20 0.50 0.42 0.47 0.49
GloVe 0.70 0.40 0.38 0.13 0.23 0.30 0.56 0.54
IncAggMDS 0.73 0.40 0.40 0.25 0.52 0.47 0.51 0.50
IncHDBMDS 0.65 0.33 0.37 0.25 0.52 0.25 0.47 0.49
IncHDBGloVe 0.58 0.38 0.38 0.16 0.33 0.30 0.57 0.52
IncAggGloVe 0.68 0.32 0.40 0.17 0.32 0.35 0.57 0.50
MoEGloVe 0.73 0.42 0.42 0.27 0.47 0.48 0.64 0.57

G
au

ss
ia

n MDS 0.81 0.45 0.46 0.26 0.58 0.48 0.53 0.51
GloVe 0.71 0.48 0.43 0.19 0.50 0.42 0.62 0.56
IncAggMDS 0.87 0.48 0.45 0.23 0.55 0.45 0.59 0.55
IncHDBMDS 0.84 0.43 0.43 0.27 0.60 0.51 0.54 0.53
IncHDBGloVe 0.62 0.38 0.50 0.22 0.44 0.42 0.62 0.56
IncAggGloVe 0.64 0.43 0.48 0.22 0.48 0.41 0.62 0.56
MoEGloVe 0.74 0.50 0.49 0.24 0.54 0.47 0.66 0.56

Table 6: Classification tasks performance (in terms of F1 score) when using the MDS space and GloVe
Space.


