Exploiting Narrative Context and A Priori Knowledge of Categories in Textual Emotion Classification

Hikari Tanabe, Tetsuji Ogawa, Tetsunori Kobayashi, Yoshihiko Hayashi


Abstract
Recognition of the mental state of a human character in text is a major challenge in natural language processing. In this study, we investigate the efficacy of the narrative context in recognizing the emotional states of human characters in text and discuss an approach to make use of a priori knowledge regarding the employed emotion category system. Specifically, we experimentally show that the accuracy of emotion classification is substantially increased by encoding the preceding context of the target sentence using a BERT-based text encoder. We also compare ways to incorporate a priori knowledge of emotion categories by altering the loss function used in training, in which our proposal of multi-task learning that jointly learns to classify positive/negative polarity of emotions is included. The experimental results suggest that, when using Plutchik’s Wheel of Emotions, it is better to jointly classify the basic emotion categories with positive/negative polarity rather than directly exploiting its characteristic structure in which eight basic categories are arranged in a wheel.
Anthology ID:
2020.coling-main.483
Volume:
Proceedings of the 28th International Conference on Computational Linguistics
Month:
December
Year:
2020
Address:
Barcelona, Spain (Online)
Venue:
COLING
SIG:
Publisher:
International Committee on Computational Linguistics
Note:
Pages:
5535–5540
Language:
URL:
https://aclanthology.org/2020.coling-main.483
DOI:
10.18653/v1/2020.coling-main.483
Bibkey:
Cite (ACL):
Hikari Tanabe, Tetsuji Ogawa, Tetsunori Kobayashi, and Yoshihiko Hayashi. 2020. Exploiting Narrative Context and A Priori Knowledge of Categories in Textual Emotion Classification. In Proceedings of the 28th International Conference on Computational Linguistics, pages 5535–5540, Barcelona, Spain (Online). International Committee on Computational Linguistics.
Cite (Informal):
Exploiting Narrative Context and A Priori Knowledge of Categories in Textual Emotion Classification (Tanabe et al., COLING 2020)
Copy Citation:
PDF:
https://aclanthology.org/2020.coling-main.483.pdf
Data
Story Commonsense