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Abstract

Recent work has shown that pre-trained Transformers obtain remarkable performance on many
natural language processing tasks, including automatic summarization. However, most work has
focused on (relatively) data-rich single-document summarization settings. In this paper, we explore
highly-abstractive multi-document summarization, where the summary is explicitly conditioned
on a user-given topic statement or question. We compare the summarization quality produced
by three state-of-the-art transformer-based models: BART, T5, and PEGASUS. We report the
performance on four challenging summarization datasets: three from the general domain and one
from consumer health in both zero-shot and few-shot learning settings. While prior work has
shown significant differences in performance for these models on standard summarization tasks,
our results indicate that with as few as 10 labeled examples, there is no statistically significant
difference in summary quality, suggesting the need for more abstractive benchmark collections
when determining state-of-the-art.

1 Introduction

Since its inception (Luhn, 1958), automatic summarization has focused on summarizing documents either
in a generic way – conveying the main points of the document to any reader regardless of their information
need – or in a task-specific way – distilling the important points of the document with respect to a specific
information need such as a question or topic statement (Mani, 2009). In the latter case, the selection of the
most salient points in the document (i.e., content selection) as well as the expression of those points (i.e.,
surface realization) must be explicitly conditioned on a user-given natural language context statement,
such as a question or topic of interest. In this setting, a single passage may be summarized in different
ways depending on the context description. Consequently, obtaining reference summaries is often time- or
cost-prohibitive, particularly when dealing with specialized domains such as healthcare.
The Document Understanding Conference has explored Topic-driven summarization (DUC) and its

successor, the Text Analysis Conference (TAC), which both ran community evaluations of topic- or
question-based summarization. Specifically, participants were asked to develop automatic summarization
approaches for generating single- or multi-document summaries that summarized a set of documents with
respect to a given topic description or question, as shown in Figure 1. Human assessors manually judged
submitted summaries.
In this work, we revisit the multi-document topic-driven abstractive summarization datasets produced

from DUC 2007, TAC 2009, and TAC 2010, as well as question-driven summarization from consumer
health. Because these datasets are relatively small (approximately 45 topics each), we explore modern
transformer-based models’ performance in the zero-shot and few-shot (10 examples) learning settings.
Specifically, we explore the quality of multi-document abstractive summarization generated by T5 (Raffel
et al., 2019), BART (Lewis et al., 2019), and PEGASUS (Zhang et al., 2019).
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//creativecommons.org/licenses/by/4.0/.



5641

Question: What became of the cast and oth-
ers related to the “Seinfeld” TV series after
it ended? What actions were taken by others
in response to the show’s closing?

Summary: After “Seinfeld” ended, Jerry Se-
infeld did a stand-up tour, a 10-show Broad-
way run, and an HBO special, “I’m Telling
You This for the Last Time”. He [...]

(a) DUC 2007

Topic: Describe efforts made toward peace
in the India-Pakistan conflict over Kashmir.

Summary: Since they became separate
nations in 1947, India and Pakistan have
fought two wars over Kashmir, the Hi-
malayan province which was split between
them. Kashmir is India’s only majority Islam
province, and an Islam [...]

(b) TAC 2009

Question: What is Nephrotic Syndrome.
What are its causes and cures?

Summary: Nephrotic syndrome is caused
by different disorders that damage the kid-
neys. In adults, most commonly by glomeru-
lonephritis. This damage leads to the release
of too much protein in the urine [...]

(c) MEDIQA

Figure 1: Example topic- and question-driven multi-document abstractive summaries (documents omitted).

2 Background

Recent work has indicated that transfer learning (pre-training a model on data-rich tasks before fine-tuning
it on a downstream task) obtains remarkable performance on many natural language processing tasks
(Yang et al., 2019; Dong et al., 2019; Liu et al., 2019b). The most successful models are obtained through
self-supervised pre-training with massive datasets to obtain transferable knowledge for new tasks (i.e.,
fine-tuning) with less abundant data (Devlin et al., 2019; Lewis et al., 2019; Keskar et al., 2019; Raffel et
al., 2019). More recently, research has indicated that these models can generate language conditioned on a
user-given prompt or context. For example, this prompt can guide the model’s content selection towards a
particular topic (Keskar et al., 2019) or inform surface realization for a specific task (Lewis et al., 2019;
Raffel et al., 2019). In Liu et al. (2020), the authors condition an extractive transformer using “control
codes” to specify the position, importance, and diversity of the sentences in the source text. In this work,
we adapt this paradigm to train and evaluate BART, T5, and PEGASUS for abstractive multi-document
summarization.
Although zero-shot learning (ZSL) has received considerable attention in the image processing

community, there has been comparatively little work on zero-shot learning specifically for summarization:
Duan et al. (2019) explore zero-shot learning for cross-lingual sentence summarization and Liu et al.
(2019a) explored zero-shot abstractive summaries of five-sentence stories. We extend these works by
evaluating zero-shot and few-shot learning for multi-document abstractive summarization.

3 Models

In this work, we compare three of the most prominent conditional language generation models: T5, BART,
and PEGASUS. To facilitate comparison, for each model we chose the variant with the most similar
architecture (such that each consists of 12 transformer layers and a similar number of learnable parameters).
Each model is pre-trained with unique strategies as described below.

BART (Bidirectional and Auto-Regressive Transformers) is pre-trained on document rotation, sentence
permutation, text-infilling, and token masking and deletion objectives (Lewis et al., 2019). In our
experiments, we used BART-Large.

T5 (Text-to-Text Transfer Transformer) is pre-trained on several unsupervised and supervised objectives,
such as token and span masking, as well as translation, classification, reading comprehension, and
summarization. Importantly, each objective is treated as a language-generation task, where the model
is conditioned to generate the correct output based on a textual prompt included in the input sequence
(Raffel et al., 2019). In this work, we used T5-Base.

PEGASUS (Pre-training with Extracted Gap-sentences for Abstractive SUmmarization Sequence-to-
sequence) was specifically designed for abstractive summarization and is pre-trained with a self-supervised
gap-sentence-generation objective (Zhang et al., 2019). In this task, entire sentences are masked from
the source document, concatenated, and used as the target “summary”. We used PEGASUS-Base in our
experiments.
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4 Experiments

We evaluated T5, BART, and PEGASUS in zero-shot (ZSL) and few-shot (FSL) learning settings on four
datasets. Summary quality was measured using ROUGE-1, ROUGE-2, and ROUGE-L �1-scores (Lin,
2004); BLEU-4 (Papineni et al., 2002); and Repetition Rate (in unigrams). Implementation details are
provided in Appendix A.

4.1 Answer Summarization at DUC 2007

The 2007 challenge of the Document Understanding Conference (DUC) focused on answering 45 natural
language questions by summarizing sets of 10 documents from the AQUAINT English news corpus (Graff,
2002). Reference summaries were between 230 and 250 words. We used 30 topics for testing (with 10 for
training and 5 for validation under FSL). Table 1 presents these results, showing that BART obtains the
highest quality summaries in both settings, though FSL provides a significant increase for all models.

System ROUGE-1 ROUGE-2 ROUGE-L BLEU-4 Repetition

T5 (ZSL) 21.21 (20.37 – 22.04) 4.35 (3.82 – 4.91) 11.59 (11.17 – 12.03) 1.45 (1.24 – 1.73) 33.21 (31.82 – 34.60)
T5 (FSL) 36.35 (34.96 – 37.66) 9.12 (8.27 – 9.94) 17.46 (16.85 – 18.10) 4.81 (4.22 – 5.51) 54.20 (52.27 – 56.24)
BART (ZSL) 37.36 (36.18 – 38.59) 8.08 (7.34 – 8.88) 16.62 (16.08 – 17.18) 5.14 (4.52 – 5.84) 44.91 (44.05 – 45.83)
BART (FSL) 40.86 (39.84 – 41.81) 9.40 (8.69 – 10.08) 18.38 (17.93 – 18.85) 6.06 (5.46 – 6.68) 53.96 (53.17 – 54.69)
PEGASUS (ZSL) 26.36 (25.05 – 27.64) 5.01 (4.38 – 5.70) 14.69 (13.95 – 15.34) 2.18 (1.83 – 2.58) 65.52 (60.81 – 70.36)
PEGASUS (FSL) 36.02 (34.63 – 37.33) 7.95 (7.26 – 8.65) 18.88 (18.27 – 19.49) 5.21 (4.57 – 5.85) 74.29 (71.73 – 76.92)

Table 1: Abstract multi-document summarization on DUC 2007 with 95% confidence intervals.

4.2 Update Summarization at TAC 2009

In 2009, the Text Analysis Conference (TAC) summarization evaluation explored summarizing sets of
10 newswire articles with respect to a given topic description in approximately 100 words under the
assumption that a user had already read a given set of earlier articles (Dang and Owczarzak, 2009). Of 44
topics used in 2009, we used 30 for testing (with 10 for training and 4 for validation under FSL). Table 2
presents these results. While T5 had the highest performance in zero-shot performance, there was no
statistically significant difference in terms of ROUGE after few-shot training, although T5 did obtain
improved BLEU.

System ROUGE-1 ROUGE-2 ROUGE-L BLEU-4 Repetition

T5 (ZSL) 29.97 (28.55 – 31.38) 9.03 (7.78 – 10.30) 17.98 (16.89 – 19.21) 3.67 (3.10 – 4.36) 27.96 (26.76 – 29.31)
T5 (FSL) 38.36 (36.92 – 39.85) 11.56 (10.25 – 12.95) 21.06 (19.74 – 22.59) 8.55 (7.32 – 9.78) 33.91 (32.75 – 35.03)
BART (ZSL) 12.82 (11.68 – 13.97) 3.73 (3.27 – 4.20) 9.43 (8.76 – 10.12) 0.57 (0.44 – 0.74) 7.32 (5.43 – 9.41)
BART (FSL) 39.28 (38.10 – 40.46) 11.33 (10.37 – 12.44) 21.11 (20.27 – 22.02) 7.30 (6.49 – 8.11) 45.30 (44.24 – 46.33)
PEGASUS (ZSL) 25.69 (23.88 – 27.66) 5.70 (4.74 – 6.69) 16.72 (15.77 – 17.65) 3.31 (2.81 – 3.91) 75.56 (71.07 – 80.36)
PEGASUS (FSL) 38.96 (37.64 – 40.17) 10.44 (9.51 – 11.40) 21.92 (20.84 – 22.95) 7.00 (6.24 – 7.88) 43.59 (41.50 – 45.87)

Table 2: Abstract multi-document summarization on TAC 2009 with 95% confidence intervals.

4.3 Guided Summarization at TAC 2010

Similar to the 2009 evaluation, the summarization track’s goal in TAC 2010 was to produce 100-word
summaries of sets of 10 newswires articles for 46 given topics. However, in 2010 each topic was assigned
to one of five pre-defined categories, and summaries were expected to cover all aspects associated with that
category (e.g., for Accidents and Natural Disasters, summaries should cover (a) what happened, (b) when
it happened, (c) the reasons for the accident or disaster, (d) casualties, (e) damages, and (f) rescue efforts
or countermeasures) (Owczarzak and Dang, 2010). We used 30 topics for testing (with 10 for training and
6 for validation). Results are illustrated in Table 3. In this case, BART had the highest performance in
both ZSL and FSL settings, although FSL provided significant improvements for all models, allowing T5
to obtain similar ROUGE-2 and ROUGE-L performance.
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System ROUGE-1 ROUGE-2 ROUGE-L BLEU-4 Repetition

T5 (ZSL) 27.01 (25.65 – 28.35) 6.25 (5.35 – 7.29) 15.72 (14.84 – 16.75) 2.06 (1.72 – 2.45) 30.47 (29.07 – 31.91)
T5 (FSL) 34.13 (32.72 – 35.77) 8.36 (7.32 – 9.50) 17.35 (16.44 – 18.28) 5.59 (4.70 – 6.54) 32.60 (31.25 – 34.05)
BART (ZSL) 28.97 (27.48 – 30.70) 6.32 (5.58 – 7.24) 15.64 (14.80 – 16.40) 3.62 (3.11 – 4.22) 27.96 (26.06 – 29.74)
BART (FSL) 38.22 (36.98 – 39.41) 10.15 (9.17 – 11.18) 20.11 (19.27 – 20.94) 6.85 (5.99 – 7.68) 39.91 (38.67 – 41.11)
PEGASUS (ZSL) 24.87 (23.14 – 26.48) 4.99 (4.31 – 5.77) 14.80 (13.97 – 15.65) 2.66 (2.26 – 3.19) 57.15 (51.71 – 62.81)
PEGASUS (FSL) 36.31 (34.95 – 37.63) 9.21 (8.27 – 10.15) 20.35 (19.56 – 21.26) 5.81 (5.09 – 6.62) 40.39 (37.73 – 43.31)

Table 3: Abstract multi-document summarization on DUC 2007 with 95% confidence intervals.

4.4 MEDIQA Summarization
The MEDIQA collection contains consumer health questions, sets of passages extracted from reliable
websites relevant to the question, and human-authored multi-document summaries of the passages
intended to provide consumer-friendly answers (Savery et al., 2020). Of the 156 available abstractive
multi-document summaries, we used 141 questions for testing (with 10 for training and 5 for validation
under FSL). Table 4 provides these results. While FSL provided a clear improvement for all models,
there were no statistically significant differences in summary quality between the three models using FSL.
Example summaries from all systems for a single MEDIQA question are provided in Figure 3.

System ROUGE-1 ROUGE-2 ROUGE-L BLEU-4 Repetition

T5 (ZSL) 31.09 (28.46 – 33.72) 14.63 (11.77 – 17.58) 22.52 (20.15 – 25.19) 7.12 (5.07 – 9.36) 31.00 (29.06 – 32.96)
T5 (FSL) 38.56 (35.94 – 41.13) 18.52 (15.54 – 21.50) 26.00 (23.67 – 28.76) 10.90 (9.08 – 13.07) 36.19 (34.73 – 37.78)
BART (ZSL) 33.51 (31.21 – 36.14) 13.87 (11.52 – 16.31) 20.87 (18.92 – 22.88) 8.21 (6.38 – 10.18) 38.24 (36.60 – 39.79)
BART (FSL) 37.65 (35.07 – 40.37) 17.01 (14.38 – 20.12) 23.54 (21.34 – 26.00) 10.83 (8.83 – 13.04) 41.48 (40.13 – 42.87)
PEGASUS (ZSL) 29.75 (26.20 – 32.89) 12.17 (9.44 – 15.12) 20.88 (18.19 – 23.49) 8.61 (6.53 – 10.84) 63.87 (58.64 – 69.69)
PEGASUS (FSL) 37.02 (33.86 – 40.33) 17.04 (13.95 – 20.12) 24.90 (22.18 – 27.68) 12.40 (9.96 – 15.08) 46.81 (43.40 – 50.27)

Table 4: Abstract multi-document summarization on MEDIQA with 95% confidence intervals.

4.5 Few-shot and Zero-shot Learning
Figure 2 compares the performance of each model in FSL and ZSL settings. FSL provided significant
increases in performance on all tasks for PEGASUS, all but MEDIQA for BART, and only two tasks for
T5, suggesting that while FSL is clearly useful for all three models, it most benefits PEGASUS.

0 10 20 30

DUC 2007
TAC 2009
TAC 2010

MEDIQA

 BART

0 10 20 30

 T5

0 10 20 30

 PEGASUS

Setting
ZSL
FSL

Figure 2: Rouge-L of each model trained under the few-shot (FSL) and zero-shot (ZSL) learning settings.

5 Conclusion

We evaluated the summarization quality produced by three state-of-the-art transformers: BART, T5,
and PEGASUS on four challenging summarization dataset in both zero-shot and few-shot learning
settings. Our results indicate that, while there are statistically significant differences between the models in
zero-shot settings, after few-shot learning with as few as 10 examples, there is little discernible difference
between them. This suggests that while large improvements have been made on standard single-document
benchmarks, highly abstractive multi-document summarization remains challenging.
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Question: What are the causes of childhood obesity?
Context: Overweight and Obesity (Risk Factors): There are many risk factors for overweight and obesity. Some risk factors can
be changed, such as unhealthy lifestyle habits and environments. Other risk factors, such as age, family history and genetics,
race and ethnicity, and sex, cannot be changed. Heathy lifestyle changes can decrease your risk for developing overweight and
obesity. Unhealthy lifestyle habits Lack of physical activity, unhealthy eating patterns, not enough sleep, and high amounts of
stress can increase your risk for overweight and obesity. Lack of physical activity Lack of physical activity due to high amounts
of TV, computer, videogame or other screen usage has been associated with a high body mass index. [abridged]
Reference Summary: There are many factors that contribute to increasing your child’s risk of becoming overweight. Regularly
eating high calorie foods can cause your child to gain weight. Lack of physical exercise can contribute to childhood obesity. If
your child comes from a family of overweight people, he or she may be more likely to put on weight. Personal, parental, and
family stress can also increase a child’s risk of obesity.

BART (FSL): There are many risk factors for overweight and obesity. Some risk factors can be changed, such as age, family
history and genetics, race and ethnicity, and sex. However, some risk factors cannot be changed. These include: poor diet, lack
of physical activity, unhealthy eating patterns, not enough sleep, and high amounts of stress. social factors such as having a low
socioeconomic status or an unhealthy social or unsafe environment in the neighborhood. Eating too much saturated and trans
fats, eating foods high in added sugars, and having an unhealthy eating pattern can increase your risk for obesity. Avoiding foods
that are high in fat and saturated fat, eating smaller meals, and reducing screen time
BART (ZSL): question: what are the causes of childhood obesity summarize: Overweight and Obesity (Risk Factors): There
are many risk factors for overweight and obesity. Some risk factors can be changed, such as unhealthy lifestyle habits and
environments. Heathy lifestyle changes can decrease your risk for becoming overweight and obese, and can help you lose
weight and maintain a healthy weight. Other risk factors, including age, family history and genetics, race and ethnicity, and sex,
cannot be changed. Age Childhood obesity remains a serious problem in the United States, and some populations are more at
risk for childhood obesity than others. The risk of unhealthy weight gain increases as you age. Adults who have

T5 (FSL): There are many risk factors for overweight and obesity. Some risk factors can be changed, such as unhealthy lifestyle
habits and environments. Other risk factors such as age, family history and genetics, race and ethnicity, and sex, cannot be
changed. Unhealthy lifestyle habits Lack of physical activity, unhealthy eating patterns, not enough sleep, and high amounts of
stress can increase your risk for overweight or obesity. Lack of exercise due to TV, computer, videogame, or other screen usage
has been associated with a high body mass index. Eating too much saturated and trans fats Eating foods high in added sugars
Visit Heart-healthy eating for more information about healthy
T5 (ZSL): Unhealthy lifestyle habits Lack of physical activity, unhealthy eating patterns, not enough sleep, and high amounts of
stress can increase your risk for overweight and obesity . age Childhood obesity remains a serious problem in the united states,
and some populations are more at risk for childhood obesity than others .

PEGASUS (FSL): Lifestyle changes can decrease your risk for developing overweight and obesity. Unhealthy lifestyle habits,
such as eating more calories than you use, and not enough sleep can increase your risk for overweight and obesity. Lack of
physical activity due to high amounts of TV, computer, videogame or other screen usage has been associated with a high body
mass index. Healthy lifestyle changes, such as being physically active and reducing screen time, can help you aim for a healthy
weight.
PEGASUS (ZSL): Unhealthy lifestyle habits Lack of physical activity, unhealthy eating patterns, not enough sleep, and high
amounts of stress can increase your risk for overweight and obesity. Unhealthy environments Many environmental factors can
increase your risk for overweight and obesity: social factors such as having a low socioeconomic status or an unhealthy social or
unsafe environment in the neighborhood built environment factors such as easy access to unhealthy fast foods, limited access to
recreational facilities or parks, and few safe or easy ways to get exercise. Read more Overweight and obesity can be prevented
by eating healthy foods, getting enough sleep, and reducing stress. Read more Overweight and obesity can be prevented by
eating healthy foods, getting enough sleep, and reducing stress. Read

Figure 3: Example summaries for the question, What are the causes of childhood obesity?
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Appendix A Implementation Details

Metrics, confidence intervals, and the PEGASUS implementation were provided by https://github.
com/google-research/pegasus. All models were trained with a batch size of 8, maximum sequence
length of 512 tokens, and 3 warm-up epochs followed by 20 training epochs using single V100X GPUs
(32 GB VRAM) on a shared cluster. Validation loss was measured every epoch and the snapshot with
lowest validation loss was used for FSL evaluation. Documents were sorted by similarity to their reference
summaries when provided to the model. T5 and BART implementations were provided by HuggingFace’s
Transformers package (Wolf et al., 2019). Existing datasets were obtained using the TensorFlow DataSets
catalogue . The source code for this paper is available on GitHub at https://github.com/h4ste/mdas.


