@inproceedings{koay-etal-2020-domain,
title = "How Domain Terminology Affects Meeting Summarization Performance",
author = "Koay, Jia Jin and
Roustai, Alexander and
Dai, Xiaojin and
Burns, Dillon and
Kerrigan, Alec and
Liu, Fei",
editor = "Scott, Donia and
Bel, Nuria and
Zong, Chengqing",
booktitle = "Proceedings of the 28th International Conference on Computational Linguistics",
month = dec,
year = "2020",
address = "Barcelona, Spain (Online)",
publisher = "International Committee on Computational Linguistics",
url = "https://aclanthology.org/2020.coling-main.499",
doi = "10.18653/v1/2020.coling-main.499",
pages = "5689--5695",
abstract = "Meetings are essential to modern organizations. Numerous meetings are held and recorded daily, more than can ever be comprehended. A meeting summarization system that identifies salient utterances from the transcripts to automatically generate meeting minutes can help. It empowers users to rapidly search and sift through large meeting collections. To date, the impact of domain terminology on the performance of meeting summarization remains understudied, despite that meetings are rich with domain knowledge. In this paper, we create gold-standard annotations for domain terminology on a sizable meeting corpus; they are known as jargon terms. We then analyze the performance of a meeting summarization system with and without jargon terms. Our findings reveal that domain terminology can have a substantial impact on summarization performance. We publicly release all domain terminology to advance research in meeting summarization.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="koay-etal-2020-domain">
<titleInfo>
<title>How Domain Terminology Affects Meeting Summarization Performance</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jia</namePart>
<namePart type="given">Jin</namePart>
<namePart type="family">Koay</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexander</namePart>
<namePart type="family">Roustai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaojin</namePart>
<namePart type="family">Dai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dillon</namePart>
<namePart type="family">Burns</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alec</namePart>
<namePart type="family">Kerrigan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fei</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 28th International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Donia</namePart>
<namePart type="family">Scott</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nuria</namePart>
<namePart type="family">Bel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chengqing</namePart>
<namePart type="family">Zong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>International Committee on Computational Linguistics</publisher>
<place>
<placeTerm type="text">Barcelona, Spain (Online)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Meetings are essential to modern organizations. Numerous meetings are held and recorded daily, more than can ever be comprehended. A meeting summarization system that identifies salient utterances from the transcripts to automatically generate meeting minutes can help. It empowers users to rapidly search and sift through large meeting collections. To date, the impact of domain terminology on the performance of meeting summarization remains understudied, despite that meetings are rich with domain knowledge. In this paper, we create gold-standard annotations for domain terminology on a sizable meeting corpus; they are known as jargon terms. We then analyze the performance of a meeting summarization system with and without jargon terms. Our findings reveal that domain terminology can have a substantial impact on summarization performance. We publicly release all domain terminology to advance research in meeting summarization.</abstract>
<identifier type="citekey">koay-etal-2020-domain</identifier>
<identifier type="doi">10.18653/v1/2020.coling-main.499</identifier>
<location>
<url>https://aclanthology.org/2020.coling-main.499</url>
</location>
<part>
<date>2020-12</date>
<extent unit="page">
<start>5689</start>
<end>5695</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T How Domain Terminology Affects Meeting Summarization Performance
%A Koay, Jia Jin
%A Roustai, Alexander
%A Dai, Xiaojin
%A Burns, Dillon
%A Kerrigan, Alec
%A Liu, Fei
%Y Scott, Donia
%Y Bel, Nuria
%Y Zong, Chengqing
%S Proceedings of the 28th International Conference on Computational Linguistics
%D 2020
%8 December
%I International Committee on Computational Linguistics
%C Barcelona, Spain (Online)
%F koay-etal-2020-domain
%X Meetings are essential to modern organizations. Numerous meetings are held and recorded daily, more than can ever be comprehended. A meeting summarization system that identifies salient utterances from the transcripts to automatically generate meeting minutes can help. It empowers users to rapidly search and sift through large meeting collections. To date, the impact of domain terminology on the performance of meeting summarization remains understudied, despite that meetings are rich with domain knowledge. In this paper, we create gold-standard annotations for domain terminology on a sizable meeting corpus; they are known as jargon terms. We then analyze the performance of a meeting summarization system with and without jargon terms. Our findings reveal that domain terminology can have a substantial impact on summarization performance. We publicly release all domain terminology to advance research in meeting summarization.
%R 10.18653/v1/2020.coling-main.499
%U https://aclanthology.org/2020.coling-main.499
%U https://doi.org/10.18653/v1/2020.coling-main.499
%P 5689-5695
Markdown (Informal)
[How Domain Terminology Affects Meeting Summarization Performance](https://aclanthology.org/2020.coling-main.499) (Koay et al., COLING 2020)
ACL
- Jia Jin Koay, Alexander Roustai, Xiaojin Dai, Dillon Burns, Alec Kerrigan, and Fei Liu. 2020. How Domain Terminology Affects Meeting Summarization Performance. In Proceedings of the 28th International Conference on Computational Linguistics, pages 5689–5695, Barcelona, Spain (Online). International Committee on Computational Linguistics.