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Abstract

Sexism, a form of oppression based on one’s sex, manifests itself in numerous ways and causes
enormous suffering. In view of the growing number of experiences of sexism reported online,
categorizing these recollections automatically can assist the fight against sexism, as it can facili-
tate effective analyses by gender studies researchers and government officials involved in policy
making. In this paper, we investigate the fine-grained, multi-label classification of accounts (re-
ports) of sexism. To the best of our knowledge, we work with considerably more categories
of sexism than any published work through our 23-class problem formulation. Moreover, we
propose a multi-task approach for fine-grained multi-label sexism classification that leverages
several supporting tasks without incurring any manual labeling cost. Unlabeled accounts of sex-
ism are utilized through unsupervised learning to help construct our multi-task setup. We also
devise objective functions that exploit label correlations in the training data explicitly. Multi-
ple proposed methods outperform the state-of-the-art for multi-label sexism classification on a
recently released dataset across five standard metrics.

1 Introduction

Sexism, defined as prejudice, stereotyping, or discrimination based on a person’s sex, occurs in various
overt and subtle forms, permeating personal as well as professional spaces. While men and boys are
also harmed by sexism, women and girls suffer the brunt of sexist mindsets and resultant wrongdoings.
With increasingly many people sharing recollections of sexism experienced or witnessed by them, the
automatic classification of these accounts into well-conceived categories of sexism can help fight this
oppression, as it can better equip authorities formulating policies and researchers of gender studies to
analyze sexism.

The detection of sexism differs from and can complement the classification of sexism. In a forum
where instances of sexism are mixed with other posts unrelated to sexism, sexism detection can be used
to identify the posts on which to perform sexism classification. Moreover, we observe the distinction be-
tween sexist statements (e.g., posts whereby one perpetrates sexism) and the accounts of sexism suffered
or witnessed (e.g., personal recollections shared as part of the #metoo movement). We also note the prior
work on detecting or classifying personal stories of sexual harassment and/or assault (Chowdhury et al.,
2019; Karlekar and Bansal, 2018). In this paper, we focus on classifying an account (report) of sexism
involving any set of categories of sexism.

Most of the existing research on sexism classification (Anzovino et al., 2018; Jafarpour et al., 2018; Jha
and Mamidi, 2017) considers at most five categories of sexism. Further, the majority of prior approaches
associate only one category of sexism with an instance of sexism. Having mutually exclusive categories
of sexism is unreasonable and limiting, as substantiated by Table 1.

To the best of our knowledge, Parikh et al. (2019) is the only work that explores the multi-label
categorization of accounts involving any type(s) of sexism. It provides the largest dataset containing
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Table 1: An Instance of sexism associated with multiple categories

Account “A colleague once saw me washing my coffee mug before leaving the office and ‘joked’
if I was practicing for my ‘home duties’. It’s sad that he doesn’t see the problem with
men not bearing half the load of household work.”

Associated
categories
of sexism

Role stereotyping: False generalizations about some roles being more suitable for
women; also applies to similar mistaken notions about men
Moral policing: The promotion of discriminatory guidelines for women under the pre-
tense of morality; also applies to statements that feed into such narratives
Hostile work environment: Sexism suffered at the workplace; also applies when sexism
perpetrated by a colleague elsewhere makes working worrisome for the victim

accounts drawn from ‘Everyday Sexism Project’1. It contains about 13K textual accounts labeled with at
least one of 23 categories of sexism formulated with the help of a social scientist. However, they perform
sexism classification among 14 categories derived by merging some sets of categories. This prohibits
distinguishing within category pairs such as {moral policing, victim blaming} and {motherhood-related
discrimination, menstruation-related discrimination}. We overcome this limitation by carrying out a
fine-grained (23-category) classification using the same labeled dataset. Table 1 defines a subset of the
23 categories; the entire set is listed in Figure 3 and defined in Parikh et al. (2019).

Given the limited labeled data and large number of categories for our sexism classification, we explore
complementary signals for the learning. As far as we know, this paper presents the first multi-task
approach for any type of sexism classification. We propose a semi-supervised multi-task multi-label
classification approach involving (up to) three tasks. All three tasks are set up automatically, requiring
no manual labeling effort; the labels and/or samples needed are created through unsupervised learning
or acquired via weak labeling. We obtain unlabeled accounts of sexism from ‘Everyday Sexism Project’
for unsupervised topic proportion distribution estimation and clustering. We develop a neural multi-task
architecture that allows for shared learning across multiple tasks through common layers/weights and a
combined loss function.

In a multi-label setting, the presence of one label may affect the likelihood of the presence of another.
While the label co-occurrences in the training data are indirectly accessible to the standard classifier
training (since the entire training data is used during the course of an epoch), we propose principled
ways of utilizing them explicitly. We formulate loss functions for multi-label classification relating to
pair-wise label correlations. We compute pair-wise label co-occurrence statistics from the training data
and use them as targets for the proposed objective functions. Through our loss functions, we seek to
bring together the actual conditional co-occurrence probabilities and the corresponding model-based
probability estimates. In addition to a generic loss function, we present a loss focusing on only non-
co-occurring label pairs. We combine a proposed semi-supervised multi-task neural model with our
generic loss function to form a method that outperforms numerous baselines with a clear margin. Our
key contributions are summed up below.

• To the best of our knowledge, this is the only work to consider as many as 23 categories for sexism
classification.
• We introduce a semi-supervised multi-task neural approach for sexism classification. Three appropri-

ate auxiliary tasks are prepared automatically through unsupervised learning and weak labeling.
• We propose loss functions aimed at tapping label correlations in the multi-label data explicitly.
• Our best-performing multi-task method and loss function yield better results than many, diverse base-

lines across five different metrics individually. Combining them enhances the performance further.

1https://everydaysexism.com
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2 Related Work

In this section, we describe prior work on the classification of sexism. Though our work involves ac-
counts of sexism, existing work on the classification of sexist or misogynous statements (e.g., tweets
wherein one perpetrates sexism or misogyny) and some distantly related work are also included in this
review. We end this section with a brief review of multi-task learning.

Melville et al. (2018) apply topic modeling to data obtained from The Everyday Sexism Project and
maps the semantic relations between topics. ElSherief et al. (2017) study user engagement with posts
related to gender based violence and their language nuances. Since sexism classification can be preceded
by sexism detection to remove posts unrelated to sexism, we note that sexism is detected by some hate
speech classification methods that include sexism as a category of hate (Badjatiya et al., 2017; Waseem
and Hovy, 2016; Zhang and Luo, 2018; Davidson et al., 2017). Frenda et al. (2019) present an approach
for detecting sexism and misogyny from tweets. Given our focus on sexism classification, we do not
delve into prior work related to hate speech or cyber-bullying (Van Hee et al., 2015; Agrawal and Awekar,
2018).

Karlekar and Bansal (2018) explore CNN, RNN, and a combination of them for categorizing personal
experiences of sexual harassment into one or more of three classes. In Yan et al. (2019), a density ma-
trix encoder inspired by quantum mechanics is used for the classification of personal stories of sexual
harassment. Khatua et al. (2018) employ deep learning methods to classify sexual violence into one of
four categories. In Anzovino et al. (2018), tweets identified as misogynist are classified as stereotype and
objectification, discredit, sexual harassment and threats of violence, dominance, or derailing using fea-
tures involving Part of Speech (POS) tags, n-grams, and text embedding. Jafarpour et al. (2018) perform
a 4-class categorization of sexist tweets. In Jha and Mamidi (2017), tweets are classified as benevolent,
hostile, or non-sexist using biLSTM with attention, SVM, and fastText. While its categorization of sex-
ism pertains to how it is stated, our work concentrates on aspects such as what an instance of sexism
involves, where it occurs, and who perpetrates it.

Parikh et al. (2019) explore multi-label categorization of accounts reporting any kind(s) of sexism.
They provide the largest dataset for sexism classification and the state-of-the-art classifier for it. Their
neural approach can combine sentence embeddings from pre-trained models like BERT with those gen-
erated using biLSTM with attention and CNN. As far as we know, our work presents the first semi-
supervised approach for the multi-label classification of accounts describing any type(s) of sexism that
goes further than using unlabeled instances only for fine-tuning pre-trained models.

Multi-Task Learning (MTL) is inspired by human learning activities wherein people often apply the
knowledge learned from previous tasks to help learn a new task (Zhang and Yang, 2017). It is useful
for multiple (related) tasks to be learned jointly so that the knowledge learned in one task can benefit
other tasks. There has been considerable interest in applying MTL to a variety of problems including
text classification using deep neural networks (DNNs) (Liu et al., 2019; Xu et al., 2019; Guo et al., 2018;
Ruder et al., 2019). MTL provides an effective way of leveraging labeled data from auxiliary tasks for
the core task, especially when labeled data available for single-task learning is not large. In this work,
we adopt MTL for fine-grained multi-label sexism classification using several auxiliary tasks.

3 Proposed Semi-supervised Multi-task Approach for Sexism Classification

Our problem statement is to classify an account of sexism (also referred to as a post henceforth) into one
or more of 23 categories of sexism. This section introduces a semi-supervised multi-task approach for it.
We begin with the auxiliary task setup and then provide the architecture details. Henceforth, we refer to
the labeled training set as L and the unlabeled set as U (w.r.t. categories of sexism).

3.1 Formulating Auxiliary Tasks
We construct three auxiliary tasks that 1) could complement sexism classification in learning terms and
2) involve unlabeled accounts of sexism obtained from ‘Everyday Sexism Project’ that substantially
outnumber the labeled instances available. The labels for all these tasks and additional samples for one
are obtained through unsupervised learning or weak labeling, as depicted in Fig. 1 and detailed below.
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1. Estimating the Topic Proportion Distribution: The Topic-p task is the prediction of topic proportion
distributions, signifying the degrees to which a given post relates to a fixed number of topics. For esti-
mating these distributions (which act as target labels in our subsequent multi-task learning) and topics,
we employ lda2vec (Moody, 2016). It produces post-to-topic proportions by mixing word2vec’s skip-
gram architecture with Dirichlet-optimized sparse topic mixtures. We fix the number of topics to 10.
While we train lda2vec on L∪U , we use only the topic proportion distributions associated with L for
multi-task learning. Experiments that substitute them with their U -based counterparts underperform.

2. Predicting the Cluster Label: Another auxiliary task that we explore is the prediction of the cluster
to which a given post belongs (Cl-pred). We perform k-means clustering on vector representations of
the posts in L∪U and thereby augment L with cluster labels for setting up this k-class classification.
The post representations are created using a BERT (Devlin et al., 2018) model tuned using unlabeled
accounts of sexism (henceforth called BERT-t). The number of clusters k is a hyper-parameter that
we tune.

3. Detecting an Account of Sexism: Identifying whether a given post is an account of sexism is adopted
as a third task (S-det). We obtain the (weakly labeled) negative data for this task from the Blog
Authorship Corpus (Schler et al., 2006) through two types of filtering. To help select accounts as
opposed to commentary, the presence of a few keywords and one past tense POS tag is mandated.
Moreover, we exclude posts that exceed the word and sentence count maximums of L. This filtering is
also used while randomly selecting posts from U as the positive data. L itself can also be (additionally)
used for this purpose.

3.2 Proposed Architecture

lda2vec

Topic proportion
distributions

Labeled accounts of
sexism

Unlabeled
accounts of

sexism

Post
representation

generation using
BERT-t

k-means cluster
labels

Training data for
sexism detection

Blog authorship
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Augmented training
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k-means clustering

Combine

Positive and
negative data

filtering

Figure 1: Our unsupervised data creation
for multi-task sexism classification
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Figure 2: Proposed multi-task neural classification

Fig. 2 presents our multi-task neural architecture. If the list of chosen tasks consists of sexism detec-
tion, the training input is a batch of tuples (samples), each of which consists of a post from L and |L|
posts randomly picked from the sexism detection training data each. Each of the two posts in a sample
is processed hierarchically for the creation of its post representation similar to Parikh et al. (2019) using
the same set of layers/weights (block A in Fig. 2). First, the words of each sentence (in each post) are
embedded separately using ELMo (Peters et al., 2018) and GloVe (Pennington et al., 2014). The two
word vector matrices are passed through biLSTM linked with an attention scheme (Yang et al., 2016),
yielding two sentence representations. This is complemented by another sentence embedding generated
using BERT-t. Next, the concatenation of the three sentence vectors is fed to biLSTM + attention to
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create the post representation.
The vector representation for the post from L is passed to a fully connected layer custom-made for

each of sexism classification, Topic-p, and Cl-pred. The other post representation is fed to a dense layer
designed for S-det. For sexism classification and S-det, the sigmoid activation is used; for the other
two tasks, we use softmax. For sexism classification, we employ the extended binary cross entropy loss
addressing the multi-label aspect (Parikh et al., 2019). For the loss for Topic-p, we explore KL divergence
(as lda2vec outputs a probability distribution) but find mean squared error (MSE) more effective. For
Cl-pred and S-det, we use categorical and binary cross entropy losses respectively. We incorporate class
imbalance neutralizing weights into the loss functions where needed. The final loss that we train with is
a weighted combination of these losses, where the weights are hyper-parameters.

We experiment with variants of this architecture corresponding to some subsets of the three auxiliary
tasks described. We also attempt transfer learning wherein a variant of the proposed model comprising
only one auxiliary task’s dense layer is used to pre-train the weights of block A used in another variant
meant for the core sexism classification task. Since this does not perform well, it is omitted.

4 Our Label Co-occurrence based Loss Functions for Multi-label Classification

In this section, we propose loss functions which explicitly use label correlations existing in the multi-
label data. In order to take advantage of label correlations this way, we compute statistics pertaining to
pair-wise label co-occurrences from the training set L and supply them as targets to the loss functions.
First, we compute the symmetric label co-occurrence (count) matrix M . We then estimate the probability
of label lj occurring given the occurrence of label li, P (j|i), as M(i, j)/f(i), where f(i) denotes the
frequency of label li. Next, we compute the set of label pairs correlated to a specified degree; S = {i, j |
P (j|i) ≤ t, i 6= j, 1 ≤ i, j ≤ q}, where the threshold t is a hyper-parameter. The proposed loss
function L-cor is then given as follows.

L-cor =
1

|S|
∑

(i,j)∈S
|
∑n

k=1 p̂kip̂kj∑n
k=1 p̂ki

− P (j|i)| (1)

Here, n and q are the numbers of posts and labels respectively. p̂ki is the estimated probability of label
li applying to post xk. L-cor is aimed at minimizing the L1 norms of the differences between the actual
conditional co-occurrence probabilities P (j|i) and their estimated model-based counterparts P̂ (j|i) for
the label pairs in S. The P̂ (j|i) estimates are derived from the probabilities p̂ki output by the model.
To include all non-diagonal labels pairs in the loss computation, t is set to 1. Conversely, to impose
penalties for only non-co-occurring (non-diagonal) label pairs, we set t to 0 and can remove || from Eq. 1
(as ∀(i, j) ∈ S, P (j|i) = 0 when t = 0).

We also devise another loss function targeting non-co-occurring label pairs. We first compute the set
of uncorrelated pairs (as per the training data); Su = {i, j | M(i, j) = 0, i < j, 1 ≤ i, j ≤ q}. Using
that, our loss function L-unc is computed using the following expression.

L-unc =
1

|Su|
∑

(i,j)∈Su

(
∑n

k=1 p̂kip̂kj)(
∑n

k=1 p̂ki +
∑n

k=1 p̂kj)

(
∑n

k=1 p̂ki)(
∑n

k=1 p̂kj)
(2)

In effect, for each (i, j) ∈ Su, we sum the model-based conditional co-occurrence probabilities P̂ (j|i)
and P̂ (i|j) here. Since Su comprises only non-co-occurring label pairs, these co-occurrence probability
estimates should be low for the optimal model weights. Hence, we minimize their sum.

We also explore two variants of the L-cor and L-unc losses. Replacing the L1 norm with the L2 norm
in Eq. 1 constitutes one of them. The other involves replacing the sum of the model-based conditional
co-occurrence probabilities in Eq. 2 with a model-based co-occurrence score. Both underperform L-cor
and L-unc.

Each proposed label co-occurrence based loss is weighed by a hyper-parameter and added to extended
binary cross entropy. We use some of the combined loss functions in conjunction with the existing
state-of-the-art model (Parikh et al., 2019) as well as our multi-task model.
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Figure 3: Pairwise conditional label co-occurrence matrix for the training data

5 Experiments

This section provides the experimental evaluation of the proposed sexism classification methods against
a number of baseline methods and presents analysis. Our code, all hyper-parameter values used are
available on GitHub2

5.1 Datasets

We use the dataset contributed by Parikh et al. (2019) comprising 13, 023 accounts of sexism, each
labeled with at least one of 23 categories of sexism. The diverse categories of sexism, derived in consul-
tation with a social scientist, range from body shaming and menstruation-related discrimination to role
stereotyping and victim blaming. Figure 3 lists the 23 categories and shows the pairwise conditional
label co-occurrence matrix for the training data L. We caution that coverage/co-occurrence statistics
related to sexism shown in this work do not represent their real-world counterparts.

We obtain unlabeled instances of sexism from ‘Everyday Sexism Project’, which has already received
several hundred thousand accounts of sexism from survivors and observers. We shortlist 70, 000 shortest
instances containing a minimum of 7 words each to form U . Short posts are preferred to maximize
the resemblance to the labeled data. Additionally, we use Blog Authorship Corpus (Schler et al., 2006)
to obtain weakly labeled negative data for the sexism detection auxiliary task; the keywords mandated
therein to help select accounts as opposed to commentary are ‘i’,‘we’, and ‘he’. The negative and positive
sets each comprise 20, 000 posts.

5.2 Evaluation Metrics

Multi-label classification, wherein classes can co-occur, is evaluated differently from the single-label
case. We adopt a number of established metrics, namely instance-based F1 referred to as Fins, instance-
based accuracy Acc, F1 macro Fmac, F1 micro Fmic, and Subset Accuracy SA (Zhang and Zhou, 2014;
Parikh et al., 2019).

5.3 Baselines

All deep learning architectures below end with a dense layer with the sigmoid activation and are trained
using the extended binary cross entropy loss.

• Random: For each test sample in training data, labels are selected randomly based on their normalised
frequencies.
2https://github.com/Harikavuppala1a/Semisupervised_Multitask_Learning
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• Traditional Machine Learning (TML): We report the performance using Support Vector Machine
(SVM), Logistic Regression (LR), and Random Forests (RF), each applied on two feature sets, namely
the average of the ELMo vectors for a post’s words (referred to as ELMO) and TF-IDF on word
unigrams and bigrams (called Word-ngrams). This gives rise to six combinations: ELMO with SVM
(ELMO-SVM), ELMO with LR (ELMO-LR), ELMO with RF (ELMO-RF), word-ngrams with SVM
(word-ngrams-SVM), word-ngrams with LR (word-ngrams-LR), and word-ngrams with RF (word-
ngrams-RF).
• Deep Learning (DL):

biLSTM and biLSTM-Attention: The word embeddings for a post are passed through a bidirectional
LSTM with and without the attention scheme from Yang et al. (2016).
Hierarchical-biLSTM-Attention: In an architecture similar to Yang et al. (2016) with GRU replaced
with LSTM, the word embeddings are first fed to biLSTM with attention to create a representation for
each sentence. These sentence embeddings are then passed through another instance of biLSTM with
attention.
BERT-biLSTM-Attention and USE-biLSTM-Attention: Sentence representations are generated using
BERT via bert-as-service (Xiao, 2018) and USE (Cer et al., 2018) each and fed to a biLSTM with
attention.
CNN-Kim: Convolutional and max-over-time pooling layers are applied to the word vectors for a post
in this method similar to Kim (2014).

Table 2: Results for the proposed methods as well as the traditional machine learning (TML), deep
learning (DL), and semi-supervised baselines

Approach Fins Fmac Fmic Acc SA
Random 0.035 0.090 0.192 0.022 0.003

TML baselines

Word-ngrams-SVM 0.453 0.227 0.413 0.331 0.107
Word-ngrams-LR 0.544 0.188 0.492 0.454 0.287
Word-ngrams-RF 0.538 0.246 0.482 0.444 0.272
ELMO-SVM 0.546 0.261 0.501 0.431 0.206
ELMO-LR 0.576 0.261 0.535 0.475 0.279
ELMO-RF 0.374 0.100 0.330 0.307 0.185

DL baselines

biLSTM 0.627 0.451 0.577 0.472 0.147
biLSTM-Attention 0.648 0.445 0.597 0.499 0.176
Hierarchical-biLSTM-Attention 0.664 0.485 0.616 0.516 0.191
BERT-biLSTM-Attention 0.591 0.397 0.546 0.431 0.089
USE-biLSTM-Attention 0.566 0.398 0.525 0.402 0.061
CNN-Kim 0.658 0.481 0.617 0.513 0.195
CNN-biLSTM-Attention 0.421 0.284 0.387 0.278 0.035
C-biLSTM 0.485 0.316 0.446 0.328 0.038

Semi-supervised
baselines

BERT-t-biLSTM-Attention 0.632 0.435 0.580 0.472 0.127
Self-training 0.704 0.513 0.654 0.557 0.220
(Parikh et al., 2019) 0.714 0.546 0.665 0.572 0.242

Proposed
multi-task methods

Auxiliary tasks
Topic-p 0.716 0.560 0.669 0.574 0.241
Cl-pred 0.716 0.558 0.668 0.577 0.251
Topic-p, Cl-pred 0.720 0.552 0.673 0.581 0.256
S-det 0.726 0.559 0.679 0.589 0.273
S-det, Cl-pred 0.724 0.558 0.679 0.589 0.275
S-det, Topic-p, Cl-pred 0.720 0.550 0.673 0.583 0.266
S-det, Topic-p 0.728 0.565 0.677 0.590 0.276

Proposed objective
functions

with
(Parikh et al., 2019)

L-unc 0.716 0.546 0.668 0.575 0.242
L-cor with t = 0 0.711 0.550 0.663 0.570 0.247
L-cor 0.723 0.550 0.672 0.584 0.264
L-cor with t = 1 0.718 0.559 0.670 0.577 0.245

Our best method S-det, Topic-p with L-cor 0.731 0.573 0.681 0.595 0.281
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CNN-biLSTM-Attention: In this baseline similar to Wang et al. (2016), each sentence’s word embed-
dings are passed through convolutional and max-over-time pooling layers. The resultant representa-
tions are then passed through a biLSTM with attention.
C-biLSTM: This is a variant of the C-LSTM architecture (Zhou et al., 2015) somewhat related to a
method used in Karlekar and Bansal (2018). After applying convolution on a post’s word vectors, the
feature maps are stacked along the filter dimension to generate a series of window vectors, which are
subsequently fed to biLSTM.
• Semi-supervised

BERT-t-biLSTM-Attention: This is the same as BERT-biLSTM-Attention except that the pre-trained
BERT model used is fine-tuned using unlabeled instances of sexism (Parikh et al., 2019).
(Parikh et al., 2019): The state-of-the-art model concatenates sentence representations obtained using
a BERT-t with those created from ELMo and GloVe embeddings separately using biLSTM with atten-
tion. The combined sentence embeddings are passed through biLSTM with attention.
Self-training: We adapt self training (Yarowsky, 1995) for multi-label classification. Iteratively, we
train (Parikh et al., 2019), use it to pseudo-label unlabeled samples, and augment the training set with
those for which the mean of the class-wise model-given probabilities exceeds a threshold.

5.4 Results
Table 2 provides the results produced by various proposed multi-task methods, objective functions and
the baselines. We set aside 15% from original labeled data for validation and testing each. The validation
set was merged into the training set during the testing phase. For each deep learning method, for each
metric, the mean of the results obtained over three runs is given.
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Figure 4: Class-wise sexism classification F-scores for the best-performing baseline (Parikh et al., 2019)
and our best method (S-det, Topic-p with L-cor). Each grey box contains the % of the training data
samples that the corresponding label applies to. The class names follow the same order as Fig. 3.

As expected, the random baseline performs extremely poorly, reflecting the challenging nature of this
fine-grained multi-label classification. Among the combinations of classifiers and features experimented
with for traditional machine learning, ELMo with logistic regression yields the best results. The best deep
learning baseline is Hierarchical-biLSTM-Attention, and it outperforms its traditional ML counterpart.
Overall, the semi-supervised method by Parikh et al. (2019) is confirmed as the best baseline.

Most proposed methods outperform all baselines across all metrics. The maximum performance im-
provement is observed for subset accuracy (SA), which is the most stringent metric. Our best performing
multi-task method involves S-det and Topic-p as the auxiliary tasks (along with the primary sexism clas-



5818

sification task). Among the proposed objective functions capitalizing on label correlations, used with
the state-of-the-art model (Parikh et al., 2019), L-cor leads to the best results for most metrics. This
loss seeks to minimize the L1 norms of the differences between the actual and model-based conditional
co-occurrence probabilities. The best performance is seen with a combined proposed method involving
auxiliary tasks S-det and Topic-p along with our L-cor loss.

Table 3: Test samples illustrating the improved performance of our combined method

Account of sexism True labels Avg. label
coverage

One day my housemate was followed all the way home (15
minute walk) by a young guy who verbally abused her the en-
tire way threatening to rape her and at one point trying to push
her into a alley.

Sexual harassment (excluding as-
sault), Threats, Physical violence
(excluding sexual violence)

12.60%

Woman just told me that a job “might be more for a man” as it
involves driving

Role stereotyping, Attribute stereo-
typing, Internalized sexism

16.11%

I was struggling at work and my manager told me that I needed
to be noticed more. Wearing more make up, dying my hair and
wearing heels would enable other men in the office to take note
of me more. The aim was that when I walked in the office, the
men would look my way.

Sexual harassment (excluding as-
sault), Hyper-sexualization (exclud-
ing body shaming), Hostile work en-
vironment (excluding pay gap)

23.34%

Figure 4 compares the class-wise performance of our best performing model with that of the best
baseline (Parikh et al., 2019). We report each label’s coverage, i.e. the proportion (%) of samples
belonging to that label in the training data, to bring out the imbalanced distribution. For a majority of
the classes, the proposed method outperforms the baseline. We note a significant improvement over
the baseline for several low-coverage classes. Table 3 provides accounts of sexism from the test set for
which our combined method made the right predictions but the best baseline did not. For each account,
the associated labels and the average of their coverage values are also reported. Our method can be seen
to work well across different labels and coverage values.

We analyze the impact of the multi-label nature of the problem on the performance in Table 4. The per-
formance for one run of our best method across different numbers of labels per post (1 to 6) is compared
against the counterpart in Parikh et al. (2019). We observe improved performance with the proposed
method across all metrics for a majority of the cases. Figure 5 shows the improvement in Fmac observed
with increasing training data. Our best method produces greater improvement than the best baseline
throughout and also yields a better result for the lowest training data % (i.e. 50).

#labels
per
post

Approach Fins Fmac Fmic Acc SA

1
Best proposed method 0.688 0.487 0.585 0.565 0.343
Best baseline method 0.667 0.414 0.554 0.537 0.314

2
Best proposed method 0.727 0.566 0.678 0.589 0.247
Best baseline method 0.719 0.532 0.667 0.575 0.215

3
Best proposed method 0.740 0.628 0.710 0.593 0.157
Best baseline method 0.739 0.535 0.705 0.592 0.174

4
Best proposed method 0.767 0.649 0.748 0.626 0.104
Best baseline method 0.721 0.592 0.721 0.594 0.094

5
Best proposed method 0.776 0.713 0.762 0.635 0.121
Best baseline method 0.740 0.716 0.728 0.592 0.091

6
Best proposed method 0.836 0.865 0.827 0.726 0.168
Best baseline method 0.800 0.789 0.784 0.671 0.167

Table 4: Performance variation across #labels per post

50 70 85 100
Training data %

0.51

0.52

0.53

0.54

0.55

0.56

0.57
Fmac for the best baseline
Fmac for our best method

Figure 5: Fmac for varying train-
ing data percentages
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6 Conclusion

We investigated the 23-class fine-grained classification of accounts of sexism in this work. We explored
neural multi-task learning for addressing this using three auxiliary tasks automatically set up through
unsupervised learning from unlabeled accounts of sexism and weak labeling. Moreover, we formulate
loss functions through which we seek to utilize correlations existing between labels in the training data.
Our best loss function and multi-task method outperform a number of varied baselines across five stan-
dard metrics on their own. We achieved even better results when we combined them. Next, we plan to
incorporate semi-supervised proxy labeling into our approach and leverage language models.
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