@inproceedings{alhindi-etal-2020-fact,
title = "Fact vs. Opinion: the Role of Argumentation Features in News Classification",
author = "Alhindi, Tariq and
Muresan, Smaranda and
Preotiuc-Pietro, Daniel",
editor = "Scott, Donia and
Bel, Nuria and
Zong, Chengqing",
booktitle = "Proceedings of the 28th International Conference on Computational Linguistics",
month = dec,
year = "2020",
address = "Barcelona, Spain (Online)",
publisher = "International Committee on Computational Linguistics",
url = "https://aclanthology.org/2020.coling-main.540",
doi = "10.18653/v1/2020.coling-main.540",
pages = "6139--6149",
abstract = "A 2018 study led by the Media Insight Project showed that most journalists think that a clearmarking of what is news reporting and what is commentary or opinion (e.g., editorial, op-ed)is essential for gaining public trust. We present an approach to classify news articles into newsstories (i.e., reporting of factual information) and opinion pieces using models that aim to sup-plement the article content representation with argumentation features. Our hypothesis is thatthe nature of argumentative discourse is important in distinguishing between news stories andopinion articles. We show that argumentation features outperform linguistic features used previ-ously and improve on fine-tuned transformer-based models when tested on data from publishersunseen in training. Automatically flagging opinion pieces vs. news stories can aid applicationssuch as fact-checking or event extraction.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="alhindi-etal-2020-fact">
<titleInfo>
<title>Fact vs. Opinion: the Role of Argumentation Features in News Classification</title>
</titleInfo>
<name type="personal">
<namePart type="given">Tariq</namePart>
<namePart type="family">Alhindi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Smaranda</namePart>
<namePart type="family">Muresan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Preotiuc-Pietro</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 28th International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Donia</namePart>
<namePart type="family">Scott</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nuria</namePart>
<namePart type="family">Bel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chengqing</namePart>
<namePart type="family">Zong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>International Committee on Computational Linguistics</publisher>
<place>
<placeTerm type="text">Barcelona, Spain (Online)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>A 2018 study led by the Media Insight Project showed that most journalists think that a clearmarking of what is news reporting and what is commentary or opinion (e.g., editorial, op-ed)is essential for gaining public trust. We present an approach to classify news articles into newsstories (i.e., reporting of factual information) and opinion pieces using models that aim to sup-plement the article content representation with argumentation features. Our hypothesis is thatthe nature of argumentative discourse is important in distinguishing between news stories andopinion articles. We show that argumentation features outperform linguistic features used previ-ously and improve on fine-tuned transformer-based models when tested on data from publishersunseen in training. Automatically flagging opinion pieces vs. news stories can aid applicationssuch as fact-checking or event extraction.</abstract>
<identifier type="citekey">alhindi-etal-2020-fact</identifier>
<identifier type="doi">10.18653/v1/2020.coling-main.540</identifier>
<location>
<url>https://aclanthology.org/2020.coling-main.540</url>
</location>
<part>
<date>2020-12</date>
<extent unit="page">
<start>6139</start>
<end>6149</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Fact vs. Opinion: the Role of Argumentation Features in News Classification
%A Alhindi, Tariq
%A Muresan, Smaranda
%A Preotiuc-Pietro, Daniel
%Y Scott, Donia
%Y Bel, Nuria
%Y Zong, Chengqing
%S Proceedings of the 28th International Conference on Computational Linguistics
%D 2020
%8 December
%I International Committee on Computational Linguistics
%C Barcelona, Spain (Online)
%F alhindi-etal-2020-fact
%X A 2018 study led by the Media Insight Project showed that most journalists think that a clearmarking of what is news reporting and what is commentary or opinion (e.g., editorial, op-ed)is essential for gaining public trust. We present an approach to classify news articles into newsstories (i.e., reporting of factual information) and opinion pieces using models that aim to sup-plement the article content representation with argumentation features. Our hypothesis is thatthe nature of argumentative discourse is important in distinguishing between news stories andopinion articles. We show that argumentation features outperform linguistic features used previ-ously and improve on fine-tuned transformer-based models when tested on data from publishersunseen in training. Automatically flagging opinion pieces vs. news stories can aid applicationssuch as fact-checking or event extraction.
%R 10.18653/v1/2020.coling-main.540
%U https://aclanthology.org/2020.coling-main.540
%U https://doi.org/10.18653/v1/2020.coling-main.540
%P 6139-6149
Markdown (Informal)
[Fact vs. Opinion: the Role of Argumentation Features in News Classification](https://aclanthology.org/2020.coling-main.540) (Alhindi et al., COLING 2020)
ACL