@inproceedings{pang-etal-2020-fastmatch,
title = "{FASTMATCH}: Accelerating the Inference of {BERT}-based Text Matching",
author = "Pang, Shuai and
Ma, Jianqiang and
Yan, Zeyu and
Zhang, Yang and
Shen, Jianping",
editor = "Scott, Donia and
Bel, Nuria and
Zong, Chengqing",
booktitle = "Proceedings of the 28th International Conference on Computational Linguistics",
month = dec,
year = "2020",
address = "Barcelona, Spain (Online)",
publisher = "International Committee on Computational Linguistics",
url = "https://aclanthology.org/2020.coling-main.568",
doi = "10.18653/v1/2020.coling-main.568",
pages = "6459--6469",
abstract = "Recently, pre-trained language models such as BERT have shown state-of-the-art accuracies in text matching. When being applied to IR (or QA), the BERT-based matching models need to online calculate the representations and interactions for all query-candidate pairs. The high inference cost has prohibited the deployments of BERT-based matching models in many practical applications. To address this issue, we propose a novel BERT-based text matching model, in which the representations and the interactions are decoupled. Then, the representations of the candidates can be calculated and stored offline, and directly retrieved during the online matching phase. To conduct the interactions and generate final matching scores, a lightweight attention network is designed. Experiments based on several large scale text matching datasets show that the proposed model, called FASTMATCH, can achieve up to 100X speed-up to BERT and RoBERTa at the online matching phase, while keeping more up to 98.7{\%} of the performance.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="pang-etal-2020-fastmatch">
<titleInfo>
<title>FASTMATCH: Accelerating the Inference of BERT-based Text Matching</title>
</titleInfo>
<name type="personal">
<namePart type="given">Shuai</namePart>
<namePart type="family">Pang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jianqiang</namePart>
<namePart type="family">Ma</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zeyu</namePart>
<namePart type="family">Yan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jianping</namePart>
<namePart type="family">Shen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 28th International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Donia</namePart>
<namePart type="family">Scott</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nuria</namePart>
<namePart type="family">Bel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chengqing</namePart>
<namePart type="family">Zong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>International Committee on Computational Linguistics</publisher>
<place>
<placeTerm type="text">Barcelona, Spain (Online)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Recently, pre-trained language models such as BERT have shown state-of-the-art accuracies in text matching. When being applied to IR (or QA), the BERT-based matching models need to online calculate the representations and interactions for all query-candidate pairs. The high inference cost has prohibited the deployments of BERT-based matching models in many practical applications. To address this issue, we propose a novel BERT-based text matching model, in which the representations and the interactions are decoupled. Then, the representations of the candidates can be calculated and stored offline, and directly retrieved during the online matching phase. To conduct the interactions and generate final matching scores, a lightweight attention network is designed. Experiments based on several large scale text matching datasets show that the proposed model, called FASTMATCH, can achieve up to 100X speed-up to BERT and RoBERTa at the online matching phase, while keeping more up to 98.7% of the performance.</abstract>
<identifier type="citekey">pang-etal-2020-fastmatch</identifier>
<identifier type="doi">10.18653/v1/2020.coling-main.568</identifier>
<location>
<url>https://aclanthology.org/2020.coling-main.568</url>
</location>
<part>
<date>2020-12</date>
<extent unit="page">
<start>6459</start>
<end>6469</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T FASTMATCH: Accelerating the Inference of BERT-based Text Matching
%A Pang, Shuai
%A Ma, Jianqiang
%A Yan, Zeyu
%A Zhang, Yang
%A Shen, Jianping
%Y Scott, Donia
%Y Bel, Nuria
%Y Zong, Chengqing
%S Proceedings of the 28th International Conference on Computational Linguistics
%D 2020
%8 December
%I International Committee on Computational Linguistics
%C Barcelona, Spain (Online)
%F pang-etal-2020-fastmatch
%X Recently, pre-trained language models such as BERT have shown state-of-the-art accuracies in text matching. When being applied to IR (or QA), the BERT-based matching models need to online calculate the representations and interactions for all query-candidate pairs. The high inference cost has prohibited the deployments of BERT-based matching models in many practical applications. To address this issue, we propose a novel BERT-based text matching model, in which the representations and the interactions are decoupled. Then, the representations of the candidates can be calculated and stored offline, and directly retrieved during the online matching phase. To conduct the interactions and generate final matching scores, a lightweight attention network is designed. Experiments based on several large scale text matching datasets show that the proposed model, called FASTMATCH, can achieve up to 100X speed-up to BERT and RoBERTa at the online matching phase, while keeping more up to 98.7% of the performance.
%R 10.18653/v1/2020.coling-main.568
%U https://aclanthology.org/2020.coling-main.568
%U https://doi.org/10.18653/v1/2020.coling-main.568
%P 6459-6469
Markdown (Informal)
[FASTMATCH: Accelerating the Inference of BERT-based Text Matching](https://aclanthology.org/2020.coling-main.568) (Pang et al., COLING 2020)
ACL