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Abstract

The paper introduces two Russian machine reading comprehension (MRC) datasets, called
MuSeRC and RuCoS, which require reasoning over multiple sentences and commonsense knowl-
edge to infer the answer. The former follows the design of MultiRC, while the latter is a coun-
terpart of the ReCoRD dataset. The datasets are included in RussianSuperGLUE, the Russian
general language understanding benchmark. We provide a comparative analysis and demonstrate
that the proposed tasks are relatively more complex as compared to the original ones for English.
Besides, performance results of human solvers and BERT-based models show that MuSeRC
and RuCoS represent a challenge for recent advanced neural models. We thus hope to facili-
tate research in the field of MRC for Russian and prompt the study of multi-hop reasoning in a
cross-lingual scenario.

1 Introduction

Machine reading comprehension (MRC) is a central task in natural language processing that simulates a
human ability to read a text and provide the correct answer for a given question. Therefore, it requires
general language understanding, knowledge about the world, and interpretive reasoning. The task has
been widely explored for the English language targeting different aspects of reading comprehension
(Hermann et al., 2015; Hill et al., 2015; Rajpurkar et al., 2016; Trischler et al., 2016; Joshi et al., 2017;
Rajpurkar et al., 2018). Recently, the paradigm has shifted towards a more complex setting, where the
model is tested to infer the answer based on interpretive analysis of text (Lai et al., 2017), reasoning over
multiple documents (Yang et al., 2018) or joint natural language inference and commonsense reasoning
(Zellers et al., 2018). However, MRC in languages other than English, specifically Russian, has not
been well-addressed primarily due to the lack of high-quality and large-scale datasets. Recognizing
this need, several cross-lingual machine reading datasets have been constructed (Asai et al., 2018; Liu
et al., 2019; Lewis et al., 2019b; Artetxe et al., 2019; Clark et al., 2020) with a few of them being a
part of cross-lingual benchmarks such as XGLUE (Liang et al., 2020) and XTREME (Hu et al., 2020).
Though allowing to evaluate the current state of language transferring methods, these cover only a small
number of languages, use a back-translation technique for the assembly or combine data from different
annotation schemes.

Surprisingly, little prior research has been devoted to the task of MRC for Russian, and no at-
tempts have been made to explore the subject in multi-hop and commonsense reasoning scenarios.
SberQuAD (Efimov et al., 2019) is the only one Russian MRC dataset designed as a competition chal-
lenge analogous to SQuAD (Rajpurkar et al., 2016). The task is formalized as an extractive reading
comprehension, where the answer to a natural language question is a text span from the corresponding
Wikipedia passage. Still, a significant portion of the questions can be answered by matching the language
patterns between the question and the passage segment that contains the answer.

To this end, we introduce two novel Russian MRC datasets, called RuCoS and MuSeRC, which require
commonsense knowledge and reasoning over multiple sentences. The datasets are publicly available and
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included in the general language understanding benchmark RussianSuperGLUE1 analogous to Super-
GLUE for English (Wang et al., 2019). The datasets follow the design of SuperGLUE tasks, namely
ReCoRD (Zhang et al., 2018) and MultiRC (Khashabi et al., 2018). We provide a thorough comparative
analysis of the Russian and English datasets and demonstrate that in some aspects the proposed datasets
are more complex as opposed to the original tasks, particularly due to the language specifics.

The remainder is organized as follows. Section 2 and Section 3 outline the description of RuCoS and
MuSeRC datasets, particularly task abstraction, dataset collection procedure, annotation procedure and
comparative analysis. Section 4 describes TF-IDF & BERT-based baselines, evaluation of human per-
formance, and comparison to the corresponding SuperGLUE tasks. We highlight the main contributions
of this work and conclude in Section 6.

2 RuCoS

2.1 Task Description
Russian Reading Comprehension with Commonsense Reasoning (RuCoS) is a large-scale dataset for
Russian MRC which consists of 87,027 samples. The majority of the samples require general language
understanding and commonsense reasoning to arrive at the answer. Each sample includes an excerpt from
a news article, a cloze-style query with a missing named entity (a placeholder), a set of named entities
that are possible answers to the query, and a set of referents to the answer entity. The task is framed as
the selection of one of the candidate referents that best fit the placeholder. To achieve this, the model is
supposed to behave like a human: to read a text describing an event and fill the placeholder in the query
based on text understanding, commonsense knowledge, and deduction of the plausible consequences or
details of the event. Notably, the answer entity may be expressed by an abbreviation, an acronym, or a
set of surface forms. Thus, the task requires understanding of rich inflectional morphology and lexical
variability of Russian. Consider an example in Figure 1 and find the original version in Appendix A.1.
The passage is a textual segment from a news article, and underlined italics correspond to named entities
in the passage which are possible answers. The query is a consequent statement supported by the passage.
The model is required to find the missing entity (or one of its referents) that best fits the placeholder.

Figure 1: An automatically translated sample from RuCoS.

2.2 Data Collection
We adapted the ReCoRD methodology to assemble RuCoS as follows. (1) First, we curated news articles
from publicly available resources, namely Lenta news dataset2 and Deutsche Welle3 website. We then

1https://russiansuperglue.com/
2https://github.com/yutkin/lenta.ru-news-dataset
3https://www.dw.com/ru/
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applied BERT-based NER model provided by DeepPavlov (Burtsev et al., 2018) to extract mentions of
entities in the articles. (2) Next, we automatically generated passages, queries, and answers from the
obtained articles. Each passage is the first few paragraphs of a news article which usually summarize
and describe the news event. We enriched the passages with top-3 titles of related articles using co-
sine similarity between the passage and the titles over TF-IDF vectors. The titles provide an additional
context or complementary summary points. The remainder of the article was split into sentences using
rusenttokenize4, a rule-based sentence segmenter for Russian. A sentence is considered to be a query if
it contains at least one named entity that is mentioned in the passage. The named entity is further to be
replaced with a placeholder to generate a cloze-style query. Besides, the sentence should satisfy a num-
ber of criteria defined in (Zhang et al., 2018). We use a morphological analyzer pymorphy2 (Korobov,
2015) to identify references of the answer entity in the passage based on lemma intersection. The result
of this stage is a set of passage-query-answer triples. (3) Furthermore, we computed the IPM frequency
of each passage using the New Frequency Vocabulary of Russian Words5. We averaged IPM values of
each token lemma in the sentence (if present in the vocabulary) over a total number of token lemmas.
We discarded triples that contain passages of the IPM frequency lower than 0.7. (4) Finally, we filtered
out the generated triples with two MRC models for Russian, particularly R-Net (Wang et al., 2017) and
RuBERT (Kuratov and Arkhipov, 2019) fine-tuned on SberQuAD. The models are released as a part of
DeepPavlov framework6. We excluded all triples correctly answered by the models. Thus, the triples
obtained at this step contain only those queries that represent a challenge for the existing Russian reading
comprehension models.

The resulted triples were randomly split into train and dev sets. We obtained additional 8K samples
from Lenta7 website for the test set to eliminate potential cheating and data leakage. Each set was
balanced by the source of news. We now describe the annotation procedure.

2.3 Annotation Procedure

Since the previous steps are fully automated, the resulted triples may contain errors obtained with any
preprocessing tool or include an incomplete set of the answer referents due to the high lexical variabil-
ity of Russian. Hence, we conducted the human filtering procedure using the Russian crowd-sourcing
service Yandex.Toloka8. Due to limited resources, only dev and test samples were validated by the
crowd-workers. The crowd-workers were required to: (1) successfully complete a training pool of 10
assignments, (2) have the user rating of more than 60%, and (3) spend at least 30 seconds on each as-
signment. To ensure the high quality of the annotation procedure, we manually annotated a set of 200
control tasks. The control tasks are used to discard those annotators whose quality performance on the
tasks is lower than 50%. Besides, we set the dynamic overlap of 3 performers, i.e. each assignment was
completed by at least 3 crowd-workers in full accordance with the above-mentioned requirements.

Appendix A.1 outlines the crowd-sourcing assignment interface. First, the crowd-workers had to
complete the training pool to better understand the task. The task instruction could be accessed at any
time. Each assignment consists of a passage in which the named entities are colored and represented
as a checkbox list. After reading the passage, the crowd-workers were given a cloze-style query with a
missing entity. The annotation task is framed as to (1) validate coherence between the passage and the
query, (2) report if the answer is not obvious or ambiguous, (3) select all the answer referents from a set
of candidates, and (4) report any inconsistency and errors in the assignment, e.g. an incomplete entity
markup, misspellings, etc. The annotation results were aggregated over the majority vote. Moreover, we
manually validated each resulted sample and corrected all the reported drawbacks. The size of the dev
and test sets is 7,577 and 7,257 samples, respectively.

4https://pypi.org/project/rusenttokenize/
5http://dict.ruslang.ru/freq.php
6http://docs.deeppavlov.ai/en/master/features/models/squad.html
7https://lenta.ru/
8https://toloka.yandex.com/tasks
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2.4 Comparison to ReCoRD

We applied rusenttokenize to split passages into sentences and spaCy Russian Tokenizer9 to build vocab-
ularies over passages and queries. We used spaCy library10 to compute statistics for ReCoRD (version
available as a part of SuperGLUE benchmark tasks11). RuCoS counts 627,872 sentences and 1.2 · 107
tokens. Table 1 summarizes statistics of the datasets which is mainly based on the ReCoRD paper.
ReCoRD is balanced by the news source in the ratio of 44% (CNN News) to 56% (Daily Mail News),
while RuCoS samples are proportioned as of 67% (Lenta) to 33% (Deutsche Welle). In contrast to
ReCoRD, RuCoS is designed so that the samples contain unique passages and queries, i.e. there are
no multiple queries to a single passage. We additionally undersampled RuCoS over top-10 entities and
answers to alleviate a potential shift in the frequency distribution.

ReCoRD RuCoS
Train Dev Test Overall Train Dev Test Overall

number of samples 65,709 7,481 7,484 80,674 72,193 7,577 7,257 87,027
queries 100,730 10,000 10,000 120,730 72,193 7,577 7,257 87,027
unique queries 99,713 9,977 9,968 80,179 72,193 7,577 7,257 87,027
unique passages 65,258 7,133 7,279 79,670 72,193 7,577 7,257 87,027
query vocab 119,069 30,844 31,028 134,397 109,899 30,203 27,813 120,410
passage vocab 352,491 93,171 94,386 395,356 279,333 90,699 83,237 303,647
tokens / query 21.3 22.1 22.2 21.4 22.2 22.1 21.6 22.2
tokens / passage 169.5 168.6 168.1 169.3 146.6 146.2 142.5 146.2
entities / passage 17.2 17.3 17.2 17.2 12.7 14.3 13.3 12.9
answers / passage 2.6 2.9 - 2.6 2.7 3.2 - 3.0
entity frequency 7.1 4.4 4.3 7.5 8.9 5.0 5.3 9.6
answer frequency 6.8 4.7 - 6.5 10.2 4.1 - 10.2
IPM query - - - - 0.86 0.85 0.86 0.86
IPM passage - - - - 0.82 0.81 0.82 0.82

Table 1: Comparative statistics of ReCoRD and RuCoS datasets.

ReCoRD tends to be more diverse regarding the entity and answer vocabularies. We assume that
this may be caused by language peculiarities, specifics of the data sources, and the topic distribution.
Besides, RuCoS comprises only single passage-query-answer triples, i.e. there are no multiple queries to
one passage. We believe that this setting allows for better coherence and cohesion between the passage
and the query. Specifically, ReCoRD query may be potentially generated from the last paragraphs of a
news article that may describe other consequences or details of the news event. Notably, each RuCoS
sample was validated on the cohesion as opposed to ReCoRD.

Note a few language peculiarities of the datasets. First, possessive adjectives (e.g. ”English”, ”Amer-
ican”, ”British”) are very common in news articles; these are extracted as named entities in English as
opposed to Russian. Second, the answer entity in RuCoS may be expressed by a set of referents and sur-
face forms. For example, ”The President of Russian Federation”, ”Vladimir Vladimirovich”, ”V. Putin”
and ”Vladimira Vladimirovicha Putina” refer to the same entity. Besides, the answer entities in RuCoS
may not be concorded in the query context. Therefore, the model is required to employ understanding of
rich inflectional morphology and high lexical variability of Russian.

9https://github.com/aatimofeev/spacy_russian_tokenizer
10https://github.com/explosion/spaCy
11https://super.gluebenchmark.com/tasks
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3 MuSeRC

3.1 Task Description

Russian Multi-Sentence Reading Comprehension (MuSeRC) is a reading comprehension dataset that
requires to reason over multiple sentences to obtain the answer. MuSeRC is the first to study multi-
hop MRC for Russian over an open-ended set of question types that require not only enhanced natural
language understanding, but also interpretive reasoning. MuSeRC is designed following three main
principles outlined in (Khashabi et al., 2018):

• Any question should be multi-hop, i.e. answered by inferring information spread across multiple
sentences in a passage;

• The answer is not necessarily a text span and can not be easily extracted. It thus requires reasoning
skills and deep text understanding;

• There can be a varying number of possible answers to the question which are independent of one
another. The task is therefore not only to find the best answer candidate but to evaluate the relevance
of each answer candidate.

We refer to multi-hop question as follows. Multi-hop question is a question that requires reasoning
over information spread across several sentences in a passage. Besides, the model is supposed to perform
interpretive reasoning and infer from general language understanding. Consider the example of the
following passage ”(1) Mother bought apples. (2) They were on the table. (3) John has never eaten
apples, that’s why he couldn’t stand it and tried one.” and the question ”Where were fruits that were
eaten by a boy?”. The question is multi-hop since the answer can be obtained with only information
aggregated from more than one sentence. Moreover, the model is to employ coreference resolution and
general language understanding.

MuSeRC task is framed as a binary classification over a set of the answer candidates. Specifically, the
model is supposed to read a text and identify if a candidate is an answer to a given question. Each sample
consists of a passage with enumerated sentences, a natural language question, and a set of possible
answers. There can be multiple correct answers to the question. Such setting tests the model’s ability to
decide on the relevance of each candidate answer independently of others. MuSeRC is designed so that
the answer may only be received by gathering information from multiple sentences.

Figure 2: An example of MuSeRC sample and the data sources distribution.

3.2 Data Collection

MuSeRC samples have diverse provenance collected over 5 different domains, and hence are expected
to be more diverse in their contents as compared to single-domain MRC datasets. Our dataset contains
more than 900 paragraphs across 5 different domains, namely: (1) elementary school texts, (2) news,
(3) fiction stories, (4) fairy tales, and (5) summaries of TV series and books. The distribution of the
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data sources is presented in Figure 2. Notably, school stories and fairy tales are relatively simple for
understanding, while news and summaries tend to be more complicated.

We used a variety of publicly available resources to construct MuSeRC such as the news segment of
Taiga corpus (Shavrina and Shapovalova, 2017), elementary school texts from Russian state exam tests,
and materials12, etc. We filtered samples which correspond to the following criteria: (1) the passage
length is of less than 1.5K characters, (2) the passage must contain named entities, and (3) if the passage
contains only one named entity, then the entity must have one or more coreference relations. Besides, we
manually validated each sample on coherence and cohesion. Each passage was segmented into sentences
via rusenttokenize. The resulted sentences were manually validated on the correctness of segmentation.

3.3 Annotation Procedure

We now describe a two-step annotation procedure for obtaining natural language questions and answer
candidates, and their further validation. We used Yandex.Toloka to conduct the annotation procedure.
The first step is to collect natural language questions and their corresponding answers for each passage
obtained in 3.2. The crowd-workers were required to: (1) pose a natural language question to a given
passage, (2) specify sentence numbers needed to obtain the answer, and (3) provide a set of both correct
and incorrect answers. We filtered out samples that require only one sentence to get the answer. To ensure
the high quality at this step, we manually validated each submitted annotation assignment. Besides,
we prepared a training pool for the crowd-workers to practice. A detailed instruction was available
at any time. First, we analyzed the assignments to check if the workers understand the task correctly.
Unfortunately, 70% of the questions were not relevant. Most of the workers cheated or posed only single-
hop questions, i.e. the questions that can be answered based on a single sentence from a passage. This
step helped us to re-design the annotation procedure so that to obtain the required data.

Hence, we incorporated the following changes for the second step as to (1) cut the training assignments
since this proved to confuse the crowd-workers, (2) provide more information on multi-hop questions
accompanied with examples in the instruction, (3) ask the workers to provide a fixed number of both
correct and incorrect answers, and (4) write a filtering script used to discard irrelevant samples based on
the assignment analysis.

In the second step, we automatically filtered out all the assignments that: (1) involve potential cheating,
(2) contain single-hop questions, and (3) include inappropriate answers. The crowd-workers were asked
to validate the results obtained in the first iteration, specifically to check if the question can be answered
using the given passage and if the answer requires the information over multiple sentences. Besides, all
the assignments were then manually validated. We present the examples of the web interface for the
annotation procedure in Appendix A.2.

3.4 Comparison to MultiRC

MuSeRC consists of 12,805 sentences and 2.53 · 105 tokens computed with rusenttokenize and spaCy
Russian Tokenizer. Table 2 represents the comparative statistics of the MultiRC and MuSeRC datasets.
MultiRC dataset contains more data than MuSeRC: questions and answers. It should be noted that
MultiRC includes nearly 2K single-hop questions. In contrast, MuSeRC is designed so that it contains
only multi-hop questions. However, the number of MuSeRC multi-hop questions is lower than that of
the MultiRC, as such questions are very time and source consuming.

Figure 3 outlines the distribution of the most frequent questions in MultiRC and MuSeRC tasks (Mul-
tiRC is on the left; MuSeRC is on the right). It’s not correct to compare question types directly but some
consistent patterns could be identified. Though the wh-questions are very common for both datasets,
MuSeRC exhibits a wide variety of the interrogative expressions due to specifics of Russian. This also
indicates a broader diversity of the question types. Notably, the variety of MuSeRC questions is higher as
compared to MultiRC, where, for example, almost 35% of questions start with the interrogative pronoun
”what”, while in Russian it constitutes about 15%. About 28% of MultiRC questions require binary
decisions (true/false or yes/no), while in MuSeRC it’s only 1%.

12https://fipi.ru/
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Figure 3: Most frequent first chunks of the questions

MultiRC MuSeRC
number of paragraphs (train) 456 500
number of paragraphs (dev) 83 100
number of paragraphs (test) 166 322
number of questions (train) 5,130 2,896
number of questions (dev) 952 528
number of questions (test) 1,819 1,812
number of answers (train) 27,242 11,950
number of answers (dev) 4,845 2,235
number of answers (test) 9,691 7,613
number of multi-hop questions 5,825 5,228
candidates / question 5.28 4.16
answers / question 2.31 1.86
sentence / passage 14.3 13.875
tokens / passage 258.9 203.9
tokens / question 10.9 7.61
tokens / answer 4.7 5.3
yes/no/true/false questions (%) 27.57% 1%

Table 2: Comparative statistics of MultiRC and MuSeRC datasets.

4 Experiments

In this section, we describe a two-step baseline approach and human performance on each task. We first
used TF-IDF method as a naive baseline (see Section 4.1.1) and three BERT-based models as advanced
baselines (see Section 4.1.2). We outline the design of the human benchmark in Section 4.2 and provide
more details in the Appendices.

Metrics We roughly follow the evaluation procedure by (Zhang et al., 2018; Khashabi et al., 2018).

• MuSeRC Since each answer-option can be assessed independently, we apply F1-averaged (F1a)
to evaluate binary decisions over all the answer options in the dataset. It is a harmonic mean of
precision and recall per question. Exact Match (EM) is the exact match per each instance, i.e. each
set of predictions should be the same as of the answers.

• RuCoS EM here measures the percentage of predictions that match any one of the answer options
exactly. Macro-averaged F1 measures the average overlap between the prediction and the answer
referents by averaging the maximum F1 scores for each instance over a total number of instances.
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4.1 Baselines

4.1.1 Naive Baseline

TF-IDF vectorization method via Scikit-learn library (Pedregosa et al., 2011) is used as a naive baseline
(TF-IDF). For RuCoS task, we replaced the cloze-style query with each candidate answer. We then
computed the cosine similarity between TF-IDF vector representations of the passage and the generated
query. The answer is the candidate of the maximum similarity value. TF-IDF solution for MuSeRC task
is similar: we concatenated the passage with each answer option, and then computed the cosine similarity
between TF-IDF vector representations of the resulted concatenations and the question. The answer of
the maximum similarity value is considered as the prediction.

4.1.2 Advanced Baselines

We fine-tuned multilingual BERT model (Devlin et al., 2019) and two monolingual ones by Deep-
Pavlov13 which are a part of HuggingFace library (Wolf et al., 2019).

• Multilingual BERT (MultiBERT) is a multilingual language model pre-trained over concatenated
monolingual Wikipedia corpora in 104 languages including Russian. We fine-tuned this model on
each English and Russian MRC tasks to compare the performance.

• RuBERT (RuBERT) is a monolingual BERT-based model that was trained on the Russian segment
of Wikipedia and Russian news data. Notably, RuBERT outperforms MultiBERT over a number
of NLP tasks for Russian.

• Conversational RuBERT (RuBERT-Conv) was trained by DeepPavlov on a number of publicly
available sources that reflect Russian relatively non-formal discourse, including OpenSubtitles (Li-
son and Tiedemann, 2016), Social Media segment of Taiga corpus, and many others.

4.2 Human Benchmark

We designed two human benchmark tasks using Yandex.Toloka to evaluate human performance. We pro-
vide examples of web interface for the tasks in the Appendices, particularly RuCoS A.1 and MuSeRC
A.2. Besides, the results of the human benchmark tasks and more detailed information are publicly avail-
able14. The crowd-workers were required to successfully complete a training pool of the corresponding
human benchmark task assignments. The expandable instruction was available at any time.

RuCoS Human Benchmark Task was framed as to (1) read the passage and the cloze-style query
with a placeholder, (2) select all the referents to the answer entity that best fits the placeholder, and (3)
report any errors, including inconsistency, incoherence, and ambiguous answers.

MuSeRC Human Benchmark Task required crowd-workers to (1) read the passage and the question,
(2) check if the answer could be obtained using the passage (3) select the number of sentences needed to
infer the answer, and (4) select one or more possible answers from a set of candidates.

Requirements to the crowd-workers are similar to those described in Section 3.3. We did not con-
sider the results of the crowd-workers whose quality performance on the control tasks was lower than
50%. The dynamic overlap of 5 annotators allowed for the high quality of the inter-annotator agreement
(Cohen’s kappa between each pair of annotators ranges between 0.31 and 0.78. Mean average across
each pair of annotators is 0.55 for MuSeRC and 0.48 for RuCoS). The platform allows to analyze the
submissions, their consistency, the level of performers’ skills, and may automatically increase the over-
lap within the range to ensure the best quality. Additionally, we manually validated all the samples that
contained any feedback from the crowd-workers. The results were aggregated using the majority vote
over each sample. We used metrics described in Section 4 to assess the performance of human solvers.

13http://docs.deeppavlov.ai/en/master/features/models/bert.html
14https://github.com/RussianNLP/RussianSuperGLUE/tree/master/HumanBenchmark
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5 Results

The results of the baseline models and human solvers are presented in Table 3. We did not evaluate
the performance of TF-IDF and BERT-based baselines on the English datasets, as it’s not appropriate
to compare them directly with Russian-oriented baselines. As for the English human benchmark tasks,
we used the scores from (Zhang et al., 2018; Khashabi et al., 2018). We now give a brief description
of the performance results. Compared to MuSeRC task, MultiRC human solvers perform slightly better
showing the difference of 1.2 F1a score and 9.9 EM score. Meanwhile, RuCoS human solvers achieve
better results as opposed to ReCoRD task. Despite that, human solvers obtained prominent performance
for each MRC task. TF-IDF baseline shows the worst results. The best MuSeRC performance among the
BERT-based models is achieved by RuBERT. Notably, RuBERT demonstrates the best results for RuCoS
task. Still, there is a substantial difference between the human and the baseline results.

It is worth mentioning that recent state-of-the-art language models for English, specifically T5 model
(Raffel et al., 2019), have outperformed the human results on both ReCoRD and MultiRC datasets. The
model achieved 94.1% of F1 score and 93.4% of EM score for ReCoRD. The following results are
obtained for MultiRC: 88.1% of F1a score and 63.3% of EM score. T5 demonstrates impressive results,
which we hope can be achieved for Russian as well. In future work, we are going to explore the language
patterns in questions of different reasoning types for both English and Russian MRC datasets. This
may be useful when studying the linguistic properties of the language models, specifically multilingual
ones. Another line of research is to analyze top-k best leader-board models in a cross-lingual scenario.
Particularly, we suppose that the training objectives of language models such as text infilling or sentence
shuffling as in T5 and BART (Lewis et al., 2019a) may play a big role for the outstanding performance.

Model MultiRC MuSeRC ReCoRD RuCoS
Human Benchmark 81.8/51.9 80.6/42.0 91.7/91.3 93.0/92.4
MultiBERT 54.8/12.0 66.8/33.6 39.7/38.9 30.6/29.6
RuBERT-Conv - 71.7/32.9 - 26.4/25.9
RuBERT - 71.7/33.6 - 34.4/33.9
TF-IDF - 58.9/24.4 - 25.6/25.1

Table 3: Comparative results of the naive & advanced baselines, and human solvers for RuCoS and
MuSeRC.

6 Conclusion

This work is devoted to the assembly of RuCoS and MuSeRC, two novel machine reading comprehen-
sion datasets for Russian. The datasets are publicly available15 and included in the evaluation suite of
RussianSuperGLUE, the Russian general language understanding benchmark. The tasks require reason-
ing over multiple sentences, commonsense knowledge, and advanced natural language understanding.
We hope to provide a detailed description of the construction procedure, as well as a comparative analy-
sis of the proposed datasets, and their analogous tasks for English. Due to the language specifics, RuCoS
and MuSeRC tend to be relatively more complicated in some aspects as opposed to ReCoRD and Mul-
tiRC. Our baselines, including recent state-of-the-art BERT-based models for Russian, can not compete
with human solvers falling beyond their performance. We hope that RuCoS and MuSeRC will spur more
research in the field of Russian reading comprehension, and prompt the study of multi-hop reasoning in
a cross-lingual scenario.
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A Appendix

We provide examples of Yandex.Toloka tasks for MuSeRC and RuCoS annotation procedures, as well
as the web interfaces of the human benchmark tasks.

A.1 RuCoS

Figure 4 shows an original sample from RuCoS dataset which was automatically translated and illustrated
in Section 2.1.

Figure 4: An original sample from RuCoS dataset provided in Section 2.1

In RuCoS annotation tasks, the crowd-workers are shown a passage, a cloze-style query, and a set
of the answer candidates organized as a checkbox list. The named entities are colored in dark green.
The workers were encouraged to report any inconsistency and errors, or give any other feedback. We
manually checked each assignment and corrected the reported errors.

Figure 5 illustrates an example of the web interface for RuCoS annotation procedure. The crowd-
workers were asked to validate the coherence between the passage and the cloze-style query, select all
the answer referents, and report any inconsistency and errors.

Figure 6 shows a sample of the web interface for RuCoS human benchmark task. The task is similar
to that of the annotation procedure. The crowd-workers were required to select all the answer referents
that best fit the query placeholder, and encouraged to give any feedback.

A.2 MuSeRC

Figure 7 shows an original sample from MuSeRC dataset which was automatically translated and pro-
vided in Section 3.1.

Figure 8 demonstrates a case of the interface for the first step of MuSeRC annotation procedure. The
crowd-workers were required to pose natural language questions to a given passage, select sentences
needed to infer the answer and provide a set of both correct and incorrect answers to the posed question.

Figure 9 outlines an example of the web interface for the second step of MuSeRC annotation proce-
dure. The crowd-workers were asked to check if a given question can be answered based on the passage
(obtained from the first step). Besides, this step allows for additional validation of the question type,
specifically one-hop or multi-hop. The workers were also asked to pose a new natural language question
to the given passage and also provide a set of both correct and incorrect answers.

Finally, Figure 10 illustrates an example of a web interface for the MuSeRC human benchmark task.
The crowd-workers were given a passage, a natural language question, and a set of the answer candidates.
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Figure 5: The web interface for RuCoS annotation procedure.

The task was to (1) check if the answer can be obtained using the passage, (2) select whether one or more
sentences are required to infer the answer, and (3) select one or more possible answers to the question.
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Figure 6: The web interface for RuCoS human benchmark task.

Figure 7: An original sample from MuSeRC dataset provided in Section 3.1
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Figure 8: Web interface for the first step of MuSeRC annotation procedure.
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Figure 9: The web interface for the second step of MuSeRC annotation procedure.
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Figure 10: Example of the assignment for the MuSeRC human benchmark task.


