@inproceedings{yoshimura-etal-2020-reference,
title = "{SOME}: Reference-less Sub-Metrics Optimized for Manual Evaluations of Grammatical Error Correction",
author = "Yoshimura, Ryoma and
Kaneko, Masahiro and
Kajiwara, Tomoyuki and
Komachi, Mamoru",
editor = "Scott, Donia and
Bel, Nuria and
Zong, Chengqing",
booktitle = "Proceedings of the 28th International Conference on Computational Linguistics",
month = dec,
year = "2020",
address = "Barcelona, Spain (Online)",
publisher = "International Committee on Computational Linguistics",
url = "https://aclanthology.org/2020.coling-main.573",
doi = "10.18653/v1/2020.coling-main.573",
pages = "6516--6522",
abstract = "We propose a reference-less metric trained on manual evaluations of system outputs for grammatical error correction (GEC). Previous studies have shown that reference-less metrics are promising; however, existing metrics are not optimized for manual evaluations of the system outputs because no dataset of the system output exists with manual evaluation. This study manually evaluates outputs of GEC systems to optimize the metrics. Experimental results show that the proposed metric improves correlation with the manual evaluation in both system- and sentence-level meta-evaluation. Our dataset and metric will be made publicly available.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="yoshimura-etal-2020-reference">
<titleInfo>
<title>SOME: Reference-less Sub-Metrics Optimized for Manual Evaluations of Grammatical Error Correction</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ryoma</namePart>
<namePart type="family">Yoshimura</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Masahiro</namePart>
<namePart type="family">Kaneko</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tomoyuki</namePart>
<namePart type="family">Kajiwara</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mamoru</namePart>
<namePart type="family">Komachi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 28th International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Donia</namePart>
<namePart type="family">Scott</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nuria</namePart>
<namePart type="family">Bel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chengqing</namePart>
<namePart type="family">Zong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>International Committee on Computational Linguistics</publisher>
<place>
<placeTerm type="text">Barcelona, Spain (Online)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We propose a reference-less metric trained on manual evaluations of system outputs for grammatical error correction (GEC). Previous studies have shown that reference-less metrics are promising; however, existing metrics are not optimized for manual evaluations of the system outputs because no dataset of the system output exists with manual evaluation. This study manually evaluates outputs of GEC systems to optimize the metrics. Experimental results show that the proposed metric improves correlation with the manual evaluation in both system- and sentence-level meta-evaluation. Our dataset and metric will be made publicly available.</abstract>
<identifier type="citekey">yoshimura-etal-2020-reference</identifier>
<identifier type="doi">10.18653/v1/2020.coling-main.573</identifier>
<location>
<url>https://aclanthology.org/2020.coling-main.573</url>
</location>
<part>
<date>2020-12</date>
<extent unit="page">
<start>6516</start>
<end>6522</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T SOME: Reference-less Sub-Metrics Optimized for Manual Evaluations of Grammatical Error Correction
%A Yoshimura, Ryoma
%A Kaneko, Masahiro
%A Kajiwara, Tomoyuki
%A Komachi, Mamoru
%Y Scott, Donia
%Y Bel, Nuria
%Y Zong, Chengqing
%S Proceedings of the 28th International Conference on Computational Linguistics
%D 2020
%8 December
%I International Committee on Computational Linguistics
%C Barcelona, Spain (Online)
%F yoshimura-etal-2020-reference
%X We propose a reference-less metric trained on manual evaluations of system outputs for grammatical error correction (GEC). Previous studies have shown that reference-less metrics are promising; however, existing metrics are not optimized for manual evaluations of the system outputs because no dataset of the system output exists with manual evaluation. This study manually evaluates outputs of GEC systems to optimize the metrics. Experimental results show that the proposed metric improves correlation with the manual evaluation in both system- and sentence-level meta-evaluation. Our dataset and metric will be made publicly available.
%R 10.18653/v1/2020.coling-main.573
%U https://aclanthology.org/2020.coling-main.573
%U https://doi.org/10.18653/v1/2020.coling-main.573
%P 6516-6522
Markdown (Informal)
[SOME: Reference-less Sub-Metrics Optimized for Manual Evaluations of Grammatical Error Correction](https://aclanthology.org/2020.coling-main.573) (Yoshimura et al., COLING 2020)
ACL