@inproceedings{bhardwaj-etal-2020-human,
title = "Human or Neural Translation?",
author = "Bhardwaj, Shivendra and
Alfonso Hermelo, David and
Langlais, Phillippe and
Bernier-Colborne, Gabriel and
Goutte, Cyril and
Simard, Michel",
editor = "Scott, Donia and
Bel, Nuria and
Zong, Chengqing",
booktitle = "Proceedings of the 28th International Conference on Computational Linguistics",
month = dec,
year = "2020",
address = "Barcelona, Spain (Online)",
publisher = "International Committee on Computational Linguistics",
url = "https://aclanthology.org/2020.coling-main.576",
doi = "10.18653/v1/2020.coling-main.576",
pages = "6553--6564",
abstract = "Deep neural models tremendously improved machine translation. In this context, we investigate whether distinguishing machine from human translations is still feasible. We trained and applied 18 classifiers under two settings: a monolingual task, in which the classifier only looks at the translation; and a bilingual task, in which the source text is also taken into consideration. We report on extensive experiments involving 4 neural MT systems (Google Translate, DeepL, as well as two systems we trained) and varying the domain of texts. We show that the bilingual task is the easiest one and that transfer-based deep-learning classifiers perform best, with mean accuracies around 85{\%} in-domain and 75{\%} out-of-domain .",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="bhardwaj-etal-2020-human">
<titleInfo>
<title>Human or Neural Translation?</title>
</titleInfo>
<name type="personal">
<namePart type="given">Shivendra</namePart>
<namePart type="family">Bhardwaj</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Alfonso Hermelo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Phillippe</namePart>
<namePart type="family">Langlais</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gabriel</namePart>
<namePart type="family">Bernier-Colborne</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Cyril</namePart>
<namePart type="family">Goutte</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michel</namePart>
<namePart type="family">Simard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 28th International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Donia</namePart>
<namePart type="family">Scott</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nuria</namePart>
<namePart type="family">Bel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chengqing</namePart>
<namePart type="family">Zong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>International Committee on Computational Linguistics</publisher>
<place>
<placeTerm type="text">Barcelona, Spain (Online)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Deep neural models tremendously improved machine translation. In this context, we investigate whether distinguishing machine from human translations is still feasible. We trained and applied 18 classifiers under two settings: a monolingual task, in which the classifier only looks at the translation; and a bilingual task, in which the source text is also taken into consideration. We report on extensive experiments involving 4 neural MT systems (Google Translate, DeepL, as well as two systems we trained) and varying the domain of texts. We show that the bilingual task is the easiest one and that transfer-based deep-learning classifiers perform best, with mean accuracies around 85% in-domain and 75% out-of-domain .</abstract>
<identifier type="citekey">bhardwaj-etal-2020-human</identifier>
<identifier type="doi">10.18653/v1/2020.coling-main.576</identifier>
<location>
<url>https://aclanthology.org/2020.coling-main.576</url>
</location>
<part>
<date>2020-12</date>
<extent unit="page">
<start>6553</start>
<end>6564</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Human or Neural Translation?
%A Bhardwaj, Shivendra
%A Alfonso Hermelo, David
%A Langlais, Phillippe
%A Bernier-Colborne, Gabriel
%A Goutte, Cyril
%A Simard, Michel
%Y Scott, Donia
%Y Bel, Nuria
%Y Zong, Chengqing
%S Proceedings of the 28th International Conference on Computational Linguistics
%D 2020
%8 December
%I International Committee on Computational Linguistics
%C Barcelona, Spain (Online)
%F bhardwaj-etal-2020-human
%X Deep neural models tremendously improved machine translation. In this context, we investigate whether distinguishing machine from human translations is still feasible. We trained and applied 18 classifiers under two settings: a monolingual task, in which the classifier only looks at the translation; and a bilingual task, in which the source text is also taken into consideration. We report on extensive experiments involving 4 neural MT systems (Google Translate, DeepL, as well as two systems we trained) and varying the domain of texts. We show that the bilingual task is the easiest one and that transfer-based deep-learning classifiers perform best, with mean accuracies around 85% in-domain and 75% out-of-domain .
%R 10.18653/v1/2020.coling-main.576
%U https://aclanthology.org/2020.coling-main.576
%U https://doi.org/10.18653/v1/2020.coling-main.576
%P 6553-6564
Markdown (Informal)
[Human or Neural Translation?](https://aclanthology.org/2020.coling-main.576) (Bhardwaj et al., COLING 2020)
ACL
- Shivendra Bhardwaj, David Alfonso Hermelo, Phillippe Langlais, Gabriel Bernier-Colborne, Cyril Goutte, and Michel Simard. 2020. Human or Neural Translation?. In Proceedings of the 28th International Conference on Computational Linguistics, pages 6553–6564, Barcelona, Spain (Online). International Committee on Computational Linguistics.