@inproceedings{cardon-grabar-2020-french,
title = "{F}rench Biomedical Text Simplification: When Small and Precise Helps",
author = "Cardon, R{\'e}mi and
Grabar, Natalia",
booktitle = "Proceedings of the 28th International Conference on Computational Linguistics",
month = dec,
year = "2020",
address = "Barcelona, Spain (Online)",
publisher = "International Committee on Computational Linguistics",
url = "https://aclanthology.org/2020.coling-main.62",
doi = "10.18653/v1/2020.coling-main.62",
pages = "710--716",
abstract = "We present experiments on biomedical text simplification in French. We use two kinds of corpora {--} parallel sentences extracted from existing health comparable corpora in French and WikiLarge corpus translated from English to French {--} and a lexicon that associates medical terms with paraphrases. Then, we train neural models on these parallel corpora using different ratios of general and specialized sentences. We evaluate the results with BLEU, SARI and Kandel scores. The results point out that little specialized data helps significantly the simplification.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="cardon-grabar-2020-french">
<titleInfo>
<title>French Biomedical Text Simplification: When Small and Precise Helps</title>
</titleInfo>
<name type="personal">
<namePart type="given">Rémi</namePart>
<namePart type="family">Cardon</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Natalia</namePart>
<namePart type="family">Grabar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 28th International Conference on Computational Linguistics</title>
</titleInfo>
<originInfo>
<publisher>International Committee on Computational Linguistics</publisher>
<place>
<placeTerm type="text">Barcelona, Spain (Online)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present experiments on biomedical text simplification in French. We use two kinds of corpora – parallel sentences extracted from existing health comparable corpora in French and WikiLarge corpus translated from English to French – and a lexicon that associates medical terms with paraphrases. Then, we train neural models on these parallel corpora using different ratios of general and specialized sentences. We evaluate the results with BLEU, SARI and Kandel scores. The results point out that little specialized data helps significantly the simplification.</abstract>
<identifier type="citekey">cardon-grabar-2020-french</identifier>
<identifier type="doi">10.18653/v1/2020.coling-main.62</identifier>
<location>
<url>https://aclanthology.org/2020.coling-main.62</url>
</location>
<part>
<date>2020-12</date>
<extent unit="page">
<start>710</start>
<end>716</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T French Biomedical Text Simplification: When Small and Precise Helps
%A Cardon, Rémi
%A Grabar, Natalia
%S Proceedings of the 28th International Conference on Computational Linguistics
%D 2020
%8 December
%I International Committee on Computational Linguistics
%C Barcelona, Spain (Online)
%F cardon-grabar-2020-french
%X We present experiments on biomedical text simplification in French. We use two kinds of corpora – parallel sentences extracted from existing health comparable corpora in French and WikiLarge corpus translated from English to French – and a lexicon that associates medical terms with paraphrases. Then, we train neural models on these parallel corpora using different ratios of general and specialized sentences. We evaluate the results with BLEU, SARI and Kandel scores. The results point out that little specialized data helps significantly the simplification.
%R 10.18653/v1/2020.coling-main.62
%U https://aclanthology.org/2020.coling-main.62
%U https://doi.org/10.18653/v1/2020.coling-main.62
%P 710-716
Markdown (Informal)
[French Biomedical Text Simplification: When Small and Precise Helps](https://aclanthology.org/2020.coling-main.62) (Cardon & Grabar, COLING 2020)
ACL