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Abstract

The advent of neural machine translation (NMT) has opened up exciting research in building
multilingual translation systems i.e. translation models that can handle more than one language
pair. Many advances have been made which have enabled (1) improving translation for low-
resource languages via transfer learning from high resource languages; and (2) building compact
translation models spanning multiple languages. In this tutorial, we will cover the latest ad-
vances in NMT approaches that leverage multilingualism, especially to enhance low-resource
translation. In particular, we will focus on the following topics: modeling parameter sharing
for multi-way models, massively multilingual models, training protocols, language divergence,
transfer learning, zero-shot/zero-resource learning, pivoting, multilingual pre-training and multi-
source translation.

1 Relevance to CL community

Machine translation (MT) is one of the most challenging problems in CL and AI, and MT research has
been at the forefront of many advances in the field. Since its advent in 2014, neural machine translation
(NMT) (Sutskever et al., 2014; Bahdanau et al., 2015) has become the dominant paradigm and has shown
the benefits of deep learning for NLP. While initial research on NMT started with building translation
systems between two languages, researchers discovered that the NMT framework can naturally incorpo-
rate multiple languages. We refer to NMT systems handling translation between more than one language
pair as multilinugal NMT (MNMT) systems.

There are multiple use cases and benefits for MNMT systems: (1) improving translation for low-
resource languages via transfer learning from high-resource languages; (2) better generalization from
exposure to diverse languages; (3) building compact translation models spanning multiple languages; (4)
rapidly building MT systems by adapting existing multilingual models. In the past few years, there has
been a lot of research addressing these themes and the area continues to be actively researched. Hence,
it would be timely to have a tutorial which systematically presents the cutting-edge work in the area of
MNMT. This would be of interest to researchers and practitioners of MT.

More broadly, multilingual NLP has received a lot of interest in recent times driven by two important
questions:

Q1. How do we build distributed representations such that similar text across languages have similar
representations?

Q2. Is it possible to have a one-model-for-all-languages solution to NLP applications despite lacking
data for certain languages?

We believe that MNMT is a natural starting point to investigate these two important questions for NLP
research. Hence, the tutorial would also be of interest to researchers and practitioners who work on
multilingual NLP.
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2 Tutorial Overview

The tutorial will draw material from a survey paper on multilingual NMT that we have authored (Dabre
et al., 2020). This paper has been published in ACM Computing Surveys. We also intend to cover some
latest advances that are not mentioned in the survey paper. We will divide the tutorial in two parts, the
first focusing on general purpose multilingual modeling and the second focusing on multiple usecases
for multilingual NMT.

In the first part, we will first present an overview of the basics of NMT and cross-lingual embeddings.
We will establish the fundamentals of MNMT and focus on various design choices. Design choices will
involve network architecture, training protocols, data processing, hyper-parameter tuning so that they
can successfully incorporate multilingualism. We will discuss specific changes to be made for translation
between related languages as well as unrelated languages. We will also talk about the limits of massively
MNMT models and provide a cost-benefit analysis from the perspective of deploying such models.

In the latter half of the tutorial, we will first focus on the challenging scenario of translation be-
tween language pairs for which there are few or no parallel corpora. We will introduce various ways
to leverage pivot languages and on transfer learning approaches. We will show how transfer learn-
ing approaches such as fine-tuning and teacher-student learning can be optimally done when language
relatedness and syntax are explicitly addressed. We will also touch upon unsupervised NMT which ad-
dresses low-resource MT using just monolingual corpora and is complimentary to NMT. We will see
how multilingualism and unsupervised approaches can be combined. We will see how MT models for
new languages can be rapidly adapted from pre-trained MNMT models. Additionally, we will spend
some time on multi-source NMT which leverages multilingual redundancy in terms of input in order to
yield high quality translations. We will end the tutorial with a discussion on possible future directions
that we believe that MNMT research should take.

3 Tutorial Outline

Some representative papers are mentioned against tutorial sections.

1. Introduction (15 min)

• Why MNMT?

• Motivating multilingual NLP

• Cross-lingual embeddings (Conneau et al., 2018; Jawanpuria et al., 2019)

• Tutorial roadmap

2. Basics of NMT (20 min) (Sutskever et al., 2014; Bahdanau et al., 2015; Sennrich et al., 2016b;
Sennrich et al., 2016a; Vaswani et al., 2017)

• Architectures (RNN/Transformer)

• Pre-processing and training

• Decoding (beam-search, reranking)

3. Multi-way translation (45min) (Firat et al., 2016a; Johnson et al., 2017)

• Prototypical architectures

• Controlling parameter sharing (Sachan and Neubig, 2018; Platanios et al., 2018; Wang et al.,
2018)

• Addressing language divergence (Vázquez et al., 2018; Gu et al., 2018)

• Training protocols (Tan et al., 2019; Lakew et al., 2018)

• Massively multilingual models (Aharoni et al., 2019; Bapna et al., 2019)

4. – Coffee Break –
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5. Transfer learning (30min)

• Fine-tuning approaches (Zoph et al., 2016; Firat et al., 2016b)

• Utilizing language relatedness (Dabre et al., 2017b; Kocmi and Bojar, 2018)

• Lexical and syntactic transfer (Nguyen and Chiang, 2017; Murthy et al., 2019)

• Rapid adaption of MT models (Neubig and Hu, 2018; Gheini and May, 2019)

6. Zero-shot/zero-resource learning (30 min) (Johnson et al., 2017; Firat et al., 2016b; Cheng et al.,
2017)

• Pivoting strategies

• Modified training objectives (Al-Shedivat and Parikh, 2019)

• Teacher-student learning (Chen et al., 2017)

• Unsupervised learning (Lample et al., 2018; Xia et al., 2019; Sen et al., 2019)

7. Multi-source translation (15 min) (Zoph and Knight, 2016; Dabre et al., 2017a)

• Missing sentences (Nishimura et al., 2018)

• Hybrid multi-source systems

• Post-editing (Chatterjee et al., 2017)

8. Future directions (15 min)

9. Summary and conclusion (10 min)

Total Time: 180 minutes (excluding break).
Type of the Tutorial: Cutting-edge.
Pre-requisites: Familiarity with sequence to sequence learning.
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