@inproceedings{van-hautte-etal-2020-leveraging,
title = "Leveraging the Inherent Hierarchy of Vacancy Titles for Automated Job Ontology Expansion",
author = {Van Hautte, Jeroen and
Schelstraete, Vincent and
Wornoo, Mika{\"e}l},
editor = "Daille, B{\'e}atrice and
Kageura, Kyo and
Terryn, Ayla Rigouts",
booktitle = "Proceedings of the 6th International Workshop on Computational Terminology",
month = may,
year = "2020",
address = "Marseille, France",
publisher = "European Language Resources Association",
url = "https://aclanthology.org/2020.computerm-1.5",
pages = "37--42",
abstract = "Machine learning plays an ever-bigger part in online recruitment, powering intelligent matchmaking and job recommendations across many of the world{'}s largest job platforms. However, the main text is rarely enough to fully understand a job posting: more often than not, much of the required information is condensed into the job title. Several organised efforts have been made to map job titles onto a hand-made knowledge base as to provide this information, but these only cover around 60{\%} of online vacancies. We introduce a novel, purely data-driven approach towards the detection of new job titles. Our method is conceptually simple, extremely efficient and competitive with traditional NER-based approaches. Although the standalone application of our method does not outperform a finetuned BERT model, it can be applied as a preprocessing step as well, substantially boosting accuracy across several architectures.",
language = "English",
ISBN = "979-10-95546-57-3",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="van-hautte-etal-2020-leveraging">
<titleInfo>
<title>Leveraging the Inherent Hierarchy of Vacancy Titles for Automated Job Ontology Expansion</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jeroen</namePart>
<namePart type="family">Van Hautte</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vincent</namePart>
<namePart type="family">Schelstraete</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mikaël</namePart>
<namePart type="family">Wornoo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<language>
<languageTerm type="text">English</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 6th International Workshop on Computational Terminology</title>
</titleInfo>
<name type="personal">
<namePart type="given">Béatrice</namePart>
<namePart type="family">Daille</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kyo</namePart>
<namePart type="family">Kageura</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ayla</namePart>
<namePart type="given">Rigouts</namePart>
<namePart type="family">Terryn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association</publisher>
<place>
<placeTerm type="text">Marseille, France</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-10-95546-57-3</identifier>
</relatedItem>
<abstract>Machine learning plays an ever-bigger part in online recruitment, powering intelligent matchmaking and job recommendations across many of the world’s largest job platforms. However, the main text is rarely enough to fully understand a job posting: more often than not, much of the required information is condensed into the job title. Several organised efforts have been made to map job titles onto a hand-made knowledge base as to provide this information, but these only cover around 60% of online vacancies. We introduce a novel, purely data-driven approach towards the detection of new job titles. Our method is conceptually simple, extremely efficient and competitive with traditional NER-based approaches. Although the standalone application of our method does not outperform a finetuned BERT model, it can be applied as a preprocessing step as well, substantially boosting accuracy across several architectures.</abstract>
<identifier type="citekey">van-hautte-etal-2020-leveraging</identifier>
<location>
<url>https://aclanthology.org/2020.computerm-1.5</url>
</location>
<part>
<date>2020-05</date>
<extent unit="page">
<start>37</start>
<end>42</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Leveraging the Inherent Hierarchy of Vacancy Titles for Automated Job Ontology Expansion
%A Van Hautte, Jeroen
%A Schelstraete, Vincent
%A Wornoo, Mikaël
%Y Daille, Béatrice
%Y Kageura, Kyo
%Y Terryn, Ayla Rigouts
%S Proceedings of the 6th International Workshop on Computational Terminology
%D 2020
%8 May
%I European Language Resources Association
%C Marseille, France
%@ 979-10-95546-57-3
%G English
%F van-hautte-etal-2020-leveraging
%X Machine learning plays an ever-bigger part in online recruitment, powering intelligent matchmaking and job recommendations across many of the world’s largest job platforms. However, the main text is rarely enough to fully understand a job posting: more often than not, much of the required information is condensed into the job title. Several organised efforts have been made to map job titles onto a hand-made knowledge base as to provide this information, but these only cover around 60% of online vacancies. We introduce a novel, purely data-driven approach towards the detection of new job titles. Our method is conceptually simple, extremely efficient and competitive with traditional NER-based approaches. Although the standalone application of our method does not outperform a finetuned BERT model, it can be applied as a preprocessing step as well, substantially boosting accuracy across several architectures.
%U https://aclanthology.org/2020.computerm-1.5
%P 37-42
Markdown (Informal)
[Leveraging the Inherent Hierarchy of Vacancy Titles for Automated Job Ontology Expansion](https://aclanthology.org/2020.computerm-1.5) (Van Hautte et al., CompuTerm 2020)
ACL