@inproceedings{parekh-etal-2020-understanding,
title = "Understanding Linguistic Accommodation in Code-Switched Human-Machine Dialogues",
author = "Parekh, Tanmay and
Ahn, Emily and
Tsvetkov, Yulia and
Black, Alan W",
editor = "Fern{\'a}ndez, Raquel and
Linzen, Tal",
booktitle = "Proceedings of the 24th Conference on Computational Natural Language Learning",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.conll-1.46/",
doi = "10.18653/v1/2020.conll-1.46",
pages = "565--577",
abstract = "Code-switching is a ubiquitous phenomenon in multilingual communities. Natural language technologies that wish to communicate like humans must therefore adaptively incorporate code-switching techniques when they are deployed in multilingual settings. To this end, we propose a Hindi-English human-machine dialogue system that elicits code-switching conversations in a controlled setting. It uses different code-switching agent strategies to understand how users respond and accommodate to the agent`s language choice. Through this system, we collect and release a new dataset CommonDost, comprising of 439 human-machine multilingual conversations. We adapt pre-defined metrics to discover linguistic accommodation from users to agents. Finally, we compare these dialogues with Spanish-English dialogues collected in a similar setting, and analyze the impact of linguistic and socio-cultural factors on code-switching patterns across the two language pairs."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="parekh-etal-2020-understanding">
<titleInfo>
<title>Understanding Linguistic Accommodation in Code-Switched Human-Machine Dialogues</title>
</titleInfo>
<name type="personal">
<namePart type="given">Tanmay</namePart>
<namePart type="family">Parekh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Emily</namePart>
<namePart type="family">Ahn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yulia</namePart>
<namePart type="family">Tsvetkov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alan</namePart>
<namePart type="given">W</namePart>
<namePart type="family">Black</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 24th Conference on Computational Natural Language Learning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Raquel</namePart>
<namePart type="family">Fernández</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tal</namePart>
<namePart type="family">Linzen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Code-switching is a ubiquitous phenomenon in multilingual communities. Natural language technologies that wish to communicate like humans must therefore adaptively incorporate code-switching techniques when they are deployed in multilingual settings. To this end, we propose a Hindi-English human-machine dialogue system that elicits code-switching conversations in a controlled setting. It uses different code-switching agent strategies to understand how users respond and accommodate to the agent‘s language choice. Through this system, we collect and release a new dataset CommonDost, comprising of 439 human-machine multilingual conversations. We adapt pre-defined metrics to discover linguistic accommodation from users to agents. Finally, we compare these dialogues with Spanish-English dialogues collected in a similar setting, and analyze the impact of linguistic and socio-cultural factors on code-switching patterns across the two language pairs.</abstract>
<identifier type="citekey">parekh-etal-2020-understanding</identifier>
<identifier type="doi">10.18653/v1/2020.conll-1.46</identifier>
<location>
<url>https://aclanthology.org/2020.conll-1.46/</url>
</location>
<part>
<date>2020-11</date>
<extent unit="page">
<start>565</start>
<end>577</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Understanding Linguistic Accommodation in Code-Switched Human-Machine Dialogues
%A Parekh, Tanmay
%A Ahn, Emily
%A Tsvetkov, Yulia
%A Black, Alan W.
%Y Fernández, Raquel
%Y Linzen, Tal
%S Proceedings of the 24th Conference on Computational Natural Language Learning
%D 2020
%8 November
%I Association for Computational Linguistics
%C Online
%F parekh-etal-2020-understanding
%X Code-switching is a ubiquitous phenomenon in multilingual communities. Natural language technologies that wish to communicate like humans must therefore adaptively incorporate code-switching techniques when they are deployed in multilingual settings. To this end, we propose a Hindi-English human-machine dialogue system that elicits code-switching conversations in a controlled setting. It uses different code-switching agent strategies to understand how users respond and accommodate to the agent‘s language choice. Through this system, we collect and release a new dataset CommonDost, comprising of 439 human-machine multilingual conversations. We adapt pre-defined metrics to discover linguistic accommodation from users to agents. Finally, we compare these dialogues with Spanish-English dialogues collected in a similar setting, and analyze the impact of linguistic and socio-cultural factors on code-switching patterns across the two language pairs.
%R 10.18653/v1/2020.conll-1.46
%U https://aclanthology.org/2020.conll-1.46/
%U https://doi.org/10.18653/v1/2020.conll-1.46
%P 565-577
Markdown (Informal)
[Understanding Linguistic Accommodation in Code-Switched Human-Machine Dialogues](https://aclanthology.org/2020.conll-1.46/) (Parekh et al., CoNLL 2020)
ACL