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Abstract

In interactive machine translation (MT),
human translators correct errors in auto-
matic translations in collaboration with the
MT systems, which is seen as an effective
way to improve the productivity gain in
translation. In this study, we model source-
language syntactic constituency parse and
target-language syntactic descriptions in
the form of supertags as conditional con-
text for interactive prediction in neural
MT (NMT). We found that the supertags
significantly improve productivity gain in
translation in interactive-predictive NMT
(INMT), while syntactic parsing somewhat
found to be effective in reducing human
efforts in translation. Furthermore, when
we model this source- and target-language
syntactic information together as the con-
ditional context, both types complement
each other and our fully syntax-informed
INMT model shows statistically significant
reduction in human efforts for a French–
to–English translation task in a reference-
simulated setting, achieving 4.30 points
absolute (corresponding to 9.18% relative)
improvement in terms of word prediction
accuracy (WPA) and 4.84 points absolute
(corresponding to 9.01% relative) reduc-
tion in terms of word stroke ratio (WSR)
over the baseline.

1 Introduction

Interactive MT (IMT) is viewed as an effective
mean to increase productivity in the translation in-
dustry. In principle, IMT aims to reduce human
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effort in automatic translation workflows by em-
ploying an iterative collaborative strategy with its
two most important components, the human agent
and the MT engine. Figure 1 represents the inter-
active protocol.Ref: we decide therefore, citizens, to take control of things.

we decide therefore, citizens, to take things in hand.

we decide therefore, citizens, to take control of things

Figure 1: Interactive protocol in collaboration with an MT
system and a user. The user wants to translate the French sen-
tence ‘Nous décidons donc, citoyens, de prendre les choses
en main.’ to English. The reference translation is ‘we decide
therefore, citizens, to take control of things’ which is used
here to simulate the user. The user corrects the first wrong
word (things) from the hypothesis. The validated prefix (ma-
genta phrase) and the last modified word (control) are fed
back to the NMT system which generates a correct suffix (of
things).

As of today, NMT (Bahdanau et al., 2015;
Vaswani et al., 2017) represents the state-of-the-
art in MT research. This has led researchers to
test interactive-predictive protocol on NMT too,
and papers (Knowles and Koehn, 2016; Peris et al.,
2017) that pursued this line of research suggest that
NMT is superior than phrase-based statistical MT
(Koehn et al., 2003) as far as interactive-predictive
translation is concerned.

In a different MT research context, Nădejde
et al. (2017) have successfully integrated CCG
(combinatory categorical grammar) syntactic cat-
egories (Steedman, 2000) into the target-side of
the then state-of-the-art recurrent neural network
(RNN) MT models (Bahdanau et al., 2015). In
this work, we investigate the possibility of mod-
elling the target-language syntax in the form of
supertags (Bangalore and Joshi, 1999; Steedman,
2000) as a conditional context in an interactive-
predictive protocol on Transformer (Vaswani et al.,



2017), the current state-of-the-art NMT model. In
a reference-simulated setting, we found that our
target-language syntax-informed interactive setup
can significantly reduce human effort in a French-
to-English translation task.

We also extract syntactic features from
constituency-based parse trees of the source
French sentences following Akoury et al. (2019),
and use them as the conditional context in the
interactive-predictive Transformer framework.
Experiments show that this contextual information
can reduce human efforts in translation to some
extent.

In addition, we apply the above strategies to-
gether, and model supertags and constituency
parse tree-based features collectively as the con-
ditional context for interactive prediction in NMT.
Our experimental results indicate that these syntac-
tic feature types are complementary. As a result,
this collaborative strategy turns out to be the best-
performing in the French-to-English task while
significantly outperforming those setups that in-
clude either feature type on WPA and WSR. To the
best of our knowledge, this is the very first study
that investigates the possibility of integrating syn-
tactic knowledge into an interactive MT model.

2 Related Work

Foster et al. (1997) were the first to introduce the
idea of interactive-predictive MT as an alternative
to pure post-editing MT. There have been a num-
ber of papers that explored this strategy in order
to minimise human effort in translation and cover
many use-cases involving SMT: e.g. applying on-
line (Ortiz-Martı́nez, 2016) and active (González-
Rubio et al., 2012) learning techniques, use of
translation memories (Barrachina et al., 2009;
Green et al., 2014), predicting the partially typed
words and prefix matching (Koehn et al., 2014),
word-graphs for reducing response time (Sanchis-
Trilles et al., 2014), alignment based post-editing
(Simianer et al., 2016), segment-based approaches
(Peris et al., 2017), suggesting more than one suf-
fix (Koehn, 2009), and exploring multimodal inter-
action (Alabau et al., 2014). This use-case has also
been moderately tested on NMT, e.g. (Knowles
and Koehn, 2016; Wuebker et al., 2016; Peris and
Casacuberta, 2018; Lam et al., 2019). To the best
of our knowledge, no one has investigated the
interactive-predictive protocol on the state-of-the-
art Transformer.

The strategy of exploiting syntactic knowledge
from the source and/or target languages for im-

proving the translation quality is not new in MT
research. It was successfully applied in the era
of classical MT (Hassan et al., 2007; Haque et al.,
2011), and is continually being applied to improve
the current state-of-the-art NMT models, e.g. (Lu-
ong et al., 2016; Nădejde et al., 2017).

3 Fully Syntactified Interactive NMT

This section presents our fully syntactified inter-
active NMT model. In NMT, at time step i, the
conditional probability of predicting output token
yi given a source sentence xJ1 and the previously
generated output token y1, ..., yi−1 is modelled as
p(yi|{y1, ..., yi−1}, xJ1 ).

In the interactive protocol, the user corrects
the wrongly translated word (by the MT system)
which appears at the left-most side. The feedback
is returned back to the MT system in the form of
ŷi−11 which is the validated prefix together with the
corrected word ŷi−1. Thus, in interactive NMT, the
conditional context becomes ŷi−11 , and the condi-
tional probability of predicting output token yi is
modelled as p(yi|{ŷ1, ..., ŷi−1}, xJ1 ). This model
serves as our baseline in this work.

In our supertag-based interactive-predictive sce-
nario, we first predict the CCG supertag (ŝi) of
the word (yi) to be predicted next. As a re-
sult, the length of the conditional context be-
comes twice the number of words in context plus
one. As far as the target-syntactified interactive
NMT is concerned, the conditional probability
of predicting the output token yi is modelled as
p(yi|{ŝ1, ŷ1, ..., ŝi−1, ŷi−1, ŝi}, xJ1 ), where ŝi−11 is
the CCG sequence of the validated prefix ŷi−11 and
ŝi is the supertag of the word (yi) to be predicted
next.

As for the modelling of source-side syntax, we
extract a chunk sequence from the constituency
parse tree of a source sentence by setting random a
maximum chunk size ({1...6}) for every sentence
(cf. Section 4.2).

Let us define a chunk sequence cM1 extracted
from the input source sentence xJ1 , where M is
the number of chunk identifiers (a concatenation
of the constituent type and subtree size) of the
chunk sequence. This results in an input sequence
lJ+M
1 , where J is the total number of words ar-

bitrarily separated by M number of chunk iden-
tifiers. In this model, at time step i, the con-
ditional probability of predicting output token yi
given a source sequence (words and chunk iden-
tifiers) lJ+M

1 , and the validated prefix together
with the corrected token ŷ1, ..., ŷi−1 is modelled



as p(yi|{ŷ1, ..., ŷi−1}, lJ+M
1 ).

In our fully syntactified interactive NMT
model, the conditional probability of pre-
dicting the output token yi is modelled as
p(yi|{ŝ1, ŷ1, ..., ŝi−1, ŷi−1, ŝi}, lJ+M

1 ), where
ŝi−11 is the CCG sequence of the validated prefix
ŷi−11 , ŝi is the supertag of the word (yi) to be
predicted next, and lJ+M

1 is the input sequence
constituting J and M numbers of words and
chunk identifiers, respectively.

4 Syntactic Context Features

4.1 Modelling CCG Supertags as Target
Language Context

This section explains why we consider a rich and
complex syntactic feature, supertags, as context in
our experiments. Supertags (Bangalore and Joshi,
1999; Steedman, 2000) are known to be context-
sensitive tags that preserve the global syntactic in-
formation at local lexical level. Having this prop-
erty, supertags resolve ambiguity in short- and
long-distance dependencies by capturing the pre-
ceding and succeeding syntactic dependencies of a
lexical term. For example, they signify whether a
particular lexical term is expecting a preposition as
an argument in order to complete the sentence.

The interactive neural MT models predict a new
hypothesis primarily based on the validated con-
text (prefix) including the left-most modified word
by the user. In the case of our syntax-informed
model, prediction of the next word is also condi-
tioned on CCG supertags (Steedman, 2000) of the
validated prefix and the word to be predicted next.
Our intuition underpinning this is that such kinds
of rich syntactic knowledge sources, which inher-
ently capture long-distance word-to-word depen-
dencies in a sentence, may be useful to improve the
prediction quality of interactive NMT, especially
for the longer sentences.

4.2 Modelling Syntactic Parse as Source
Language Context

Following Akoury et al. (2019) we extract a chunk
sequence from the constituency parse tree of a
source sentence. Akoury et al. (2019) conducted
a series of experiments for getting optimal value
(k) for the maximum size of a chunk (subtree).
In particular, they tested random and fixed value
for (k). The random k ({1...6}) was found to be
best-performing when chunk identifiers were au-
toregressively predicted in the target using Trans-
former (Akoury et al., 2019). In our experiments,
we adopted their best-up and set the maximum size

of a chunk (subtree) random ({1...6}) for every
sentence. Note that a chunk identifier represents
a concatenation of the constituent type and sub-
tree size (e.g. VP2). In our case, the chunk iden-
tifiers encode additional contextual knowledge on
the source side. We adopt the procedure described
in Akoury et al. (2019) in order to extract chunk
sequences for the source French sentences using
the Berkeley Neural Parser.1 As an example, Ta-
ble 1 shows a chunk sequence extracted from a
French sentence ‘si le cliquable doit être à l’état
pressé’ in row B. The third row of the table (cf.
row C) shows the resulting input sequence which
is a combination of words and chunk identifiers.
As for the chunk identifier, we see from Table 1
that NP3 is a combination of the constituency la-
bel NP and the number of terminals of the subtree
(‘l’ état pressé’), i.e. 3. Note that for this example
sentence the maximum size of a subtree was 3.

5 Experimental Setups

5.1 Methods of forming conditional syntactic
context

In theory, prediction of an output token in the
interactive-predictive scenario is conditioned on a
user-validated prefix and the input sentence. As
discussed above, we model rich syntactic features
from the constituency-based parse trees as source
context with an expectation to improve the pre-
diction quality in INMT. Hence, in our case, the
source-side context is an input sequence of words
and chunk identifiers. In interactive mode, if the
user makes a correction, the conditional context is
modified, i.e. the validated prefix including the last
modified word is provided to the MT model for the
prediction of the remaining hypothesis. Nonethe-
less, the source-side context including our syn-
tactic parse features remains unchanged over the
course of generation of the target translation.

We model target-side syntactic contexts (CCG
supertags) as conditional context in two different
ways as follows. In our first setup, we directly
use the supertags that are predicted by Transformer
as a part of the conditional context for the pre-
diction of the remaining hypothesis. It implies
that the setup follows the interleaving technique of
Nădejde et al. (2017) in which the CCG tag of a
token is kept before its token as shown in Table
1. For example, wordi is produced by the decoder
in a hypothesis having ccgi as its CCG supertag
that was predicted in the previous time step. If the
1https://github.com/nikitakit/
self-attentive-parser



A à la 4e séance , M Oberthür a rendu compte des résultats des consultations
B P1 NP3 PONCT1 NC1 PONCT1 VN3 P+D1 NP3
C P1 à NP3 la 4e séance PONCT1 , NC1 M PONCT1 Oberthür VN3 a rendu compte P+D1 des NP3 résultats des consultations

D
P1 à NP3 la 4e séance PONCT1 , NC1 M PONCT1 Ober@@ PONCT1 th@@ PONCT1 ü@@ PONCT1 r VN3 a rendu compte P+D1 des
NP3 résultats des consultations

E at the 4th meeting , Mr. Oberthür reported on the results of the consultations

F
(S/S)/NP at NP[nb]/N the N/N 4th N meeting N/N , N/N Mr. N Oberthür (S[dcl]\NP)/NP reported PP/NP on NP[nb]/N the N results
(NP\NP)/NP of NP[nb]/N the N consultations

G
(S/S)/NP at NP[nb]/N the N/N 4th N meeting N/N , N/N Mr. N Ober@@ N th@@ N ü@@ N r (S[dcl]\NP)/NP reported PP/NP on
NP[nb]/N the N results (NP\NP)/NP of NP[nb]/N the N consultations

Table 1: A: a French sentence, B: chunk identifiers, C: input sequence: a combination of the French words and chunk identifiers,
D: the segmented version of the French sentence, E: an English sentence, F: the English sentence with CCG supertags, G: the
segmented version of the English sentence.

Input sentence il y a des voitures neuve et chère à tout les coins de rue, exactement comme avant la crise de 2008.
Input sequence
with parsing info

VN3 il y a DET1 des NC1 voitures AP3 neuve et chère P1 à ADJ1 tout DET1 les NC1 coins P1 de NC1 rue
PONCT1 , ADV1 exactement P1 comme P1 avant DET1 la NC1 crise PP2 de 2008 PONCT1 .

Reference there are new and expensive cars on every street corner , exactly like before the 2008 crisis .

Initial
hypothesis

there (S[dcl]\NP[thr])/NP are N/N new conj and N/N sh@@ N/N ere N cars ((S\NP)\(S\NP))/NP across
NP[nb]/N the N/N streets N , ((S\NP)\(S\NP))/((S\NP)\(S\NP)) just ((S\NP)\(S\NP))/((S\NP)\(S\NP)) as
((S\NP)\(S\NP))/PP prior PP/NP to NP[nb]/N the N/N 2008 N/N crisis N .

Hypothesis after
several iterations

NP[thr] there (S[dcl]\NP[thr])/NP are N/N new conj and N/N expensive N cars ((S\NP)\(S\NP))/NP on
NP[nb]/N every N/N street N corner ((S\NP)\(S\NP))/((S\NP)\(S\NP)) just ((S\NP)\(S\NP))/((S\NP)\(S\NP)) as
((S\NP)\(S\NP))/PP prior PP/NP to NP[nb]/N the N/N 2008 N/N crisis N .

INMT interface there are new and expensive cars on every street corner just as prior to the 2008 crisis .
Correction
by user

there are new and expensive cars on every street corner , as prior to the 2008 crisis .

Applying on the
fly CCG supertagger

NP[thr] there (S[dcl]\NP[thr])/NP are N/N new conj and N/N expensive N cars ((S\NP)\(S\NP))/NP on
NP[nb]/N every N/N street N/N corner N , ((S\NP)\(S\NP))/((S\NP)\(S\NP)) as ((S\NP)\(S\NP))/PP prior
PP/NP to NP[nb]/N the N/N 2008 N/N crisis N .

New hypothesis there are new and expensive cars on every street corner , exactly like before the 2008 crisis .

Table 2: An example showing applying On the fly CCG supertagger on hypothesis.

user sees that wordi is not appropriate in the con-
text (i.e. it is incorrectly predicted by the system),
the user edits/removes wordi and replaces it with a
new token wordnew. Now, when the modified con-
text (i.e. validated prefix) is fed back to the NMT
model, wordnew will have the tag of wordi, i.e.
ccgi. In other words, the final two tokens of the
conditional context would be ccgi wordnew. We
carried out an analysis to see how closely these
supertags are related to the new words added by
the user (cf. Section 6.4). In this regard, we ap-
plied BPE segmentation on the training sentences.
The sub-word units of a word inherit the CCG cat-
egory of the word. As an example, we show an
English sentence with supertags in Table 1. We
see from row E of Table 1 that CCG ‘N’ of a word
‘Oberthür’ is distributed over its sub-words (i.e.
Ober@@ th@@ ü@@ and r). Our first experi-
mental setup is referred to as PredCCG.

Akoury et al. (2019) showed that integrat-
ing target-side ground-truth syntactic information
into Transformer at decoding time significantly
improved translation quality, and their syntax-
based model outperformed the baseline Trans-
former model by a large margin in terms of BLEU
(Papineni et al., 2002). In reality, there is no way

of obtaining the target-side ground-truth syntac-
tic information at decoding time. However, in
interactive-predictive mode, we found a way to ob-
tain a slightly better CCG sequence for the par-
tial translation (i.e. validated prefix) and inject
them into the model at run-time, which we be-
lieve can positively impact the model’s subsequent
predictions. In other words, in our second setup,
we integrate a CCG supertagger into our INMT
framework, and apply that on the validated pre-
fix and unchecked suffix on the fly. The tagger
is invoked when the user makes a correction. As
an example, when the user inserts a new token
wordnew in place of an incorrectly predicted to-
ken (wordi), the CCG supertagger is invoked and
applied to the validated prefix and unchecked suf-
fix on the fly. In Table 2, we show how On the
fly CCG supertagger is applied in our interactive
interface. We see from rows 6 and 7 of Table 2
that the user replaces the wrongly predicted token
just with a correct token ‘,’. The CCG supertag
((S\NP)\(S\NP))/((S\NP)\(S\NP)) of the incor-
rect token ‘just’ is assigned to the new token ‘,’
which is incorrect in this context. When the user
commits this change, On the fly CCG supertagger
is invoked and applied to the corrected hypothesis



(a combination of validated prefix and unchecked
suffix). As can be seen from row 8 of Table 2,
a new CCG tag sequence is generated for the hy-
pothesis, and we see that CCG (N) of the newly
added token ‘,’ is correct. Finally, INMT predicts
another suggestion (row 9 of Table 2) where we see
the remaining predictions are correct in the con-
text. We call this experimental setup OnflyCCG.
Note that the model is trained at sub-word level
and generates sub-words at output; however, word
level tokens are presented to the user. Naturally,
On the fly CCG supertagger is applied to a hypoth-
esis of word level.

5.2 MT systems
We carry out experiments with French-to-English
with the UN corpus2 (Ziemski et al., 2016). The
training and development sets contain 12,238,995
and 1,500 sentences, respectively. We use 1,500
sentences from the WMT15 news test set new-
stest2015 as our test set. In order to build our MT
systems, we use the Sockeye3 (Hieber et al., 2018)
toolkit. Our training setups are as follows. The to-
kens of the training, evaluation and validation sets
are segmented into sub-word units using BPE. We
performed 30,000 join operations. We use 6 layers
in the encoder and decoder sides, an 8-head atten-
tion, hidden layer of size 512, embedding vector of
size 512, learning rate 0.0002, and minimum batch
size of 1,800 tokens. EasyCCG4 (Lewis and Steed-
man, 2014), a CCG supertagger, is used for gener-
ating the CCG sequence for the English sentences.

Transformer (Baseline) 26.90
Source Syntactified (SS) 26.96
Target Syntactified (TS) 27.10
Fully Syntactified (FS) 27.36 (p-value: 0.059)

Table 3: The BLEU scores of baseline and syntactified NMT
systems.

Table 3 shows the performance of our base-
line and syntax-sensitive NMT systems in terms
of BLEU. The second and third rows represent the
NMT models that incorporate source- and target-
language syntactic contexts, respectively, which
we call source- (SS) and target-syntactified (TS)
NMT systems, respectively. We see from Table
3 that the BLEU scores of these two MT sys-
tems and Transformer are very similar. Addition-
ally, we performed statistical significance test us-
ing bootstrap resampling methods (Koehn, 2004).
2https://www.statmt.org/wmt13/training-parallel-un.tgz
3https://github.com/awslabs/sockeye
4https://github.com/mikelewis0/easyccg

We found that the differences of the BLEU scores
of these MT systems are not statistically signifi-
cant.

The fourth row shows the BLEU score of the
NMT system that integrates both the source- and
target-language syntactic contexts (i.e. supertags
and syntactic parse, respectively) together. We call
this model our fully syntactified (FS) NMT system.
The FS NMT system produces a 0.46 BLEU point
(corresponding to 1.7% relative) gain on the test
set over the baseline. The differences of the BLEU
scores of the FS and baseline Transformer mod-
els are not statistically significant either. When we
integrate the source- and target-language syntactic
contexts individually into Transformer, they do not
positively impact the system’s performance. How-
ever, when we integrate them collectively into the
model, we see that they bring a moderate gain in
terms of BLEU over the baseline, and the gain is
very close to the significance level (p-value: 0.059)
too. It seems that both contextual features comple-
ment each other and bring about an (moderate) im-
provement. Although the primary objective of this
work is to observe the prediction of Transformer in
an interactive-predictive platform while modelling
different syntactic constraints as conditional con-
text, this can also be seen as an important finding
to MT research.

6 Results and Discussion

In this section, first we explain the strategy that we
adopted for evaluating the interactive-predictive
MT systems. Then, we present our evaluation re-
sults along with some discussions and analysis.

6.1 Evaluation Plan for INMT

We evaluate the performance of the INMT sys-
tems using two evaluation metrics, WSR and
WPA. WSR denotes the total number of token
replacements required to obtain the desired hy-
pothesis (Peris et al., 2017). WPA is the per-
centage of words that the INMT system pre-
dicts correctly, given a prefix of all the previous
translator-produced words (Knowles and Koehn,
2016). WSR and WPA are calculated on word
level. The process of evaluating translations in in-
teractive scenarios is expensive as it requires hu-
man evaluators. As an alternative, we adopted a
reference-simulated evaluation strategy as in Peris
et al. (2017), where instead of taking feedback
from the real user, the reference sentence is used as
the feedback. In other words, each time an inter-
active MT model generates a hypothesis it is com-
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Figure 2: WSR and WPA scores of the syntax-informed and baseline INMT systems with respect to sentence lengths.

pared with the reference sentence from left to right.

6.2 Evaluation Results

6.2.1 The SS INMT System
In this section, we present the evaluation re-

sults that we obtain using the source-language syn-
tactic constituency parse as conditional context in
the interactive-predictive Transformer model. The
WSR and WPA scores of the baseline and SS
Transformer models are shown in Table 4. Note
that WSR is an error metric, which means that
lower scores are better. We see from the ta-
ble that integrating this context into the model
brought about a 0.56 point absolute (correspond-
ing to 1.04% relative) reduction and a 0.31 point
absolute (corresponding to 0.66% relative) gain
in terms of WSR and WPA, respectively, over
the baseline. We use approximate randomization
(Yeh, 2000) to test the statistical significance of
the difference between the two systems. We found
that these differences are not statistically signifi-
cant. These results indicate that using the syntactic

Baseline SS INMT
WSR 53.77 53.21
WPA 46.82 47.13

Table 4: Performance of the SS INMT System.

constituency parse as context in interactive neural
MT models has only a minor impact on reducing
human effort in translation.

6.2.2 The TS INMT System

In this section, we obtain experimental results
to evaluate the interactive-predictive Transformer
model that uses target-language supertags as con-
ditional context on the test set. We report the re-
sults in Table 5. The third and fourth columns of
Table 5 represent two setups (PredCCG and On-
flyCCG) that we describe in Section 5.1. The first
column of the table represents the baseline Trans-
former system. The gains in WSR and WPA over
the baseline are found to be the highest when On
the fly CCG supertagger is applied on the user
modified hypothesis (cf. Section 5.1). With this,
we achieve a 3.16 point absolute (corresponding
to 5.87% relative) reduction and a 2.65 point ab-
solute (corresponding to 5.65% relative) improve-
ment in terms of WSR and WPA, respectively, on
the test set over the baseline. These differences are
statistically significant. When we compare Pred-
CCG and OnflyCCG setups, we see that Onfly-
CCG brings a 1.09 WSR point absolute (corre-
sponding to 2.10% relative) reduction and a 1.18
WPA point absolute (corresponding to 2.44% rela-
tive) improvement over the PredCCG setup, which



Baseline PredCCG OnflyCCG GT
WSR 53.77 51.70 50.61 29.44
WPA 46.82 48.29 49.47 70.53

Table 5: Performance of the TS INMT System

are statistically significant too. This indicates that
especially with the OnflyCCG setup supertags as
target-language context can have significant im-
pact on reducing human effort in translation.

For comparison we also report the WPA and
WSR scores of our TS INMT system on an ideal
setup, i.e. when we feed Transformer with ground-
truth CCG supertags instead of those predicted by
the Transformer or generated by On the fly CCG
supertagger. As expected, this setup surpasses the
baseline and context-based setups by a large mar-
gins in terms of WSR and WPA.

6.2.3 The FS INMT System
As discussed above, we use both source and tar-

get syntax as the conditional context in interactive
prediction in NMT. The first two rows of Table 6
represent the evaluation results obtained by inte-
grating both as a collective feature into the INMT
model. This feature brings about a statistically sig-
nificant improvements in terms of WPA and WSR,
respectively, over the baseline across two setups:
PredCCG and OnflyCCG. We see from Table 6
that OnflyCCG is the best-performing setup that
produces a 4.84 point absolute (corresponding to
9.01% relative) reduction and a 4.30 point abso-
lute (corresponding to 9.18% relative) improve-
ment in terms of WSR and WPA, respectively over
the baseline.

Baseline PredCCG OnflyCCG GT
WSR 53.77 50.03 48.93 28.24
WPA 46.82 49.67 51.12 71.69
WSR -1.67 -1.68 -1.20
WPA +1.38 +1.65 +1.16

Table 6: Performance of the FS INMT System.

As for PredCCG and OnflyCCG, the FS INMT
model with OnflyCCG statistically significantly
surpassed the one with PredCCG as far as reduc-
tion of human effort is concerned. As above, we
see that the ideal setup (GT) again surpasses the
baseline and context-based setups by large mar-
gins. We make a comparison of Table 5 and 6 for
the three setups (PredCCG, OnflyCCG, and GT),
and differences in WSR and WPA scores are pre-
sented in the last rows of Table 6. We see consis-
tent reductions in WSR and improvements in WPA

across the three setups with the combined contex-
tual features, which are statistically significant.

CCG as target context and, to a certain extent,
syntactic parse as source context were found to be
effective in reducing human effort when applied
individually. Nevertheless, CCG (target) and syn-
tactic parse (source) together as a context turn out
to be the best-performing setup with statistically
significant gains over either feature type. In this
sense, we can say that source and target-side syn-
tactic contextual features complement each other
as far as neural interactive prediction is concerned.
We conjecture that since the conditional context
includes source-language syntactic constituency
parse and target-language syntactic constructs in
the form of CCG supertags together, it provides
the NMT model with better syntactic agreement
between the source and target sentences, which, in
turn, helps the model generate better predictions.

6.3 Impact on Sentence Lengths
For further analysis, we place the sentences of our
test set into four sets (c.f. Figure 2) as per the
sentence length measures, i.e. number of words
nw<15, 15<nw≤25, 25<nw≤35 and 35<nw.
This division was made based on the lengths of
reference sentences. In Figure 2, we plot the dis-
tributions of WPA and WSR scores over the sen-
tence length-based sets. As can be seen from the
figure, both the TS and FS INMT systems produce
increasingly better WSR and WPA scores as the
length of the reference sentences increases. As dis-
cussed above, supertags encode wider context of a
sentence, which could help the decoder to capture
long-range word-to-word dependencies at genera-
tion time. In other words, as the length of the vali-
dated prefix increases, the corresponding CCG su-
pertag sequences help better predict the subsequent
tokens correctly.

6.4 CCG supertags of the Words of User
Choice

Fr–>En (TS) Fr–>En (FS)
PredCCG OnflyCCG PredCCG OnflyCCG

Whole testset 41.07 23.95 39.58 22.52
nw <15 40.64 23.88 40.25 22.02
15 <nw <25 40.84 23.04 39.44 21.92
25 <nw <35 42.80 25.28 40.19 23.35
35 <nw 39.32 24.33 38.06 22.89

Table 7: % of CCG supertags that becomes incorrect when
the user replace the incorrectly predicted token in hypothesis
with the token of his choice.

As mentioned in Section 5.1, we came up with
two different ways to use the target-language su-



pertags as conditional context for the predictions
in INMT. First, in the PredCCG setup, if the user
makes a correction, the user’s choice of word in-
herits the CCG supertag of the word that the user
has just corrected, which, in fact, is predicted by
the INMT system. The new word and the incor-
rect word that the user has just corrected could be
syntactically or semantically different. As a result,
the supertag that the new word inherits could be
incorrect. We calculate the percentage of CCG su-
pertags that are incorrect for the new words when
the predicted words were wrong and edited by the
user. We also produce such statistics for the sec-
ond experimental setup, OnflyCCG. In Table 7,
we show the percentage of CCG supertags those
were incorrectly assigned to new words on both
the experimental setups. We clearly see from the
table that the second setup (OnflyCCG) is far bet-
ter than the first setup (PredCCG) in terms of as-
signing correct CCG tags to the new words that
the user has just corrected, i.e. better by 17.06% to
17.12%. This is seen consistently across the sen-
tence length-based sets too. When we compare this
across the TS and FS INMT systems, we see that
the percentage of correctly assigned CCG tags to
the words of the user’s choice in the FS INMT sys-
tem is higher (by 1.43%) than the TS INMT system
on the test set.

6.5 Latency for the CCG supertagger

We calculate the average delay for a correction
(i.e. processing time) by the user for baseline,
PredCCG, OnflyCCG and GT (ground-truth) se-
tups using the TS INMT system, which are shown
in Table 8. We see from the table that the delays
are comparable across the systems. As for Onfly-

Baseline PredCCG OnflyCCG GT
0.28 0.35 0.47 0.28

Table 8: Average Latency (in seconds) for generating modi-
fied hypothesis

CCG, we exclusively calculate the average latency
for applying the CCG supertagger, which is found
to be 0.12 seconds only. Hence, the supertag-
ger does not bring much computational overhead
and impact latency as far as translation time in the
interactive-predictive platform is concerned.

6.6 Average Number of Partial Hypothesis
Processed

In the interactive protocol, when the user makes a
correction, the MT system re-translates the source

sentence given the validated partial hypothesis. Fi-
nally, the new translation is shown to the user. In

PredCCG OnflyCCG GT
Baseline 8.91
SS 8.84
TS 8.56 8.38 5.72
FS 8.24 8.11 5.36

Table 9: Average number of partial hypothesis processed.

Table 9, we show the average number of partial hy-
potheses processed (i.e. how many the MT system
has to re-translate) for each sentence in the test set.
For this analysis, we consider all the experimen-
tal setups (PredCCG, OnflyCCG and GT) and MT
system types (SS, TS and FS INMT). We see from
Table 9 that the OnflyCCG on FS INMT setup wins
out if we omit the ideal setup (GT). In other words,
source- and target-language syntactic contexts in
combination have more impact in INMT than ei-
ther type individually.

7 Conclusion

In this paper, we have integrated a rich and
complex syntactic knowledge in the form of su-
pertags and/or syntactic constituency parse into the
current state-of-the-art neural MT model, Trans-
former. Furthermore, we tested whether integra-
tion of such knowledge sources into Transformer
could indeed reduce human efforts in translation
in an interactive-predictive scenario. We carried
out our experiments on French-to-English, a high
resource widely-used translation-pair in industry.
We compared our syntax-informed and baseline
Transformer models on an interactive-predictive
platform. The use of syntactic constituency parse
as conditional context has minor impact on re-
ducing human effort in translation. We modelled
target-language supertags as conditional context in
interactive NMT in two different ways, and both
of these significantly positively impact productiv-
ity in translation.

Interestingly, supertags (target) and con-
stituency parse (source) together as a context
turns out to be the best-performing setup with
significant gains over either feature type. In this
sense, we can say that source and target-side
syntactic contextual features complement as far
as neural interactive prediction is concerned. In
fact, the conditional context in this setup includes
both source-language constituency parse and
target-language CCG, which essentially provides
the INMT model with better syntactic agree-
ment between the source and target sentences.



We conjecture that this could be the reason
why this collaborative strategy turned out to be
best-performing.

Our analysis shows that the OnflyCCG setup
(where CCG assigned by On the fly CCG supertag-
ger) significantly outperformed PredCCG (where
CCG predicted by Transformer) in terms of assign-
ing correct CCG to the words of user’s choice by
large margins (17.06% to 17.12%). In fact, our
proposed setup (OnflyCCG), to a certain extent,
provides a way to inject correct context into the
interactive model. This could be the reason why
OnflyCCG turned out to be best-performing.

Our analysis unraveled many sides of our
syntax-aware models in an interactive-predictive
environment. For an example, we particu-
larly found that our syntax-informed interactive-
predictive models have positively impacted more
for the translation of longer sentences. Given the
importance of interactive MT in translation indus-
try, the findings of this work can be crucial for their
production as our methods can positively impact
their productivity gain in translation.

Given the fact that linguistic tools such as su-
pertaggers and constituency parsers are only read-
ily available for a handful of languages, in fu-
ture, we will continue to pursue this line of in-
vestigation with exploring integration of language-
independent contextual knowledge in interactive-
predictive NMT. In future, we plan to evaluate our
interactive MT systems with human agents.
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