Document-level Neural MT: A Systematic Comparison
António Lopes, M. Amin Farajian, Rachel Bawden, Michael Zhang, André F. T. Martins
Correct Metadata for
Abstract
In this paper we provide a systematic comparison of existing and new document-level neural machine translation solutions. As part of this comparison, we introduce and evaluate a document-level variant of the recently proposed Star Transformer architecture. In addition to using the traditional metric BLEU, we report the accuracy of the models in handling anaphoric pronoun translation as well as coherence and cohesion using contrastive test sets. Finally, we report the results of human evaluation in terms of Multidimensional Quality Metrics (MQM) and analyse the correlation of the results obtained by the automatic metrics with human judgments.- Anthology ID:
- 2020.eamt-1.24
- Volume:
- Proceedings of the 22nd Annual Conference of the European Association for Machine Translation
- Month:
- November
- Year:
- 2020
- Address:
- Lisboa, Portugal
- Editors:
- André Martins, Helena Moniz, Sara Fumega, Bruno Martins, Fernando Batista, Luisa Coheur, Carla Parra, Isabel Trancoso, Marco Turchi, Arianna Bisazza, Joss Moorkens, Ana Guerberof, Mary Nurminen, Lena Marg, Mikel L. Forcada
- Venue:
- EAMT
- SIG:
- Publisher:
- European Association for Machine Translation
- Note:
- Pages:
- 225–234
- Language:
- URL:
- https://aclanthology.org/2020.eamt-1.24/
- DOI:
- Bibkey:
- Cite (ACL):
- António Lopes, M. Amin Farajian, Rachel Bawden, Michael Zhang, and André F. T. Martins. 2020. Document-level Neural MT: A Systematic Comparison. In Proceedings of the 22nd Annual Conference of the European Association for Machine Translation, pages 225–234, Lisboa, Portugal. European Association for Machine Translation.
- Cite (Informal):
- Document-level Neural MT: A Systematic Comparison (Lopes et al., EAMT 2020)
- Copy Citation:
- PDF:
- https://aclanthology.org/2020.eamt-1.24.pdf
Export citation
@inproceedings{lopes-etal-2020-document, title = "Document-level Neural {MT}: A Systematic Comparison", author = "Lopes, Ant{\'o}nio and Farajian, M. Amin and Bawden, Rachel and Zhang, Michael and Martins, Andr{\'e} F. T.", editor = "Martins, Andr{\'e} and Moniz, Helena and Fumega, Sara and Martins, Bruno and Batista, Fernando and Coheur, Luisa and Parra, Carla and Trancoso, Isabel and Turchi, Marco and Bisazza, Arianna and Moorkens, Joss and Guerberof, Ana and Nurminen, Mary and Marg, Lena and Forcada, Mikel L.", booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation", month = nov, year = "2020", address = "Lisboa, Portugal", publisher = "European Association for Machine Translation", url = "https://aclanthology.org/2020.eamt-1.24/", pages = "225--234", abstract = "In this paper we provide a systematic comparison of existing and new document-level neural machine translation solutions. As part of this comparison, we introduce and evaluate a document-level variant of the recently proposed Star Transformer architecture. In addition to using the traditional metric BLEU, we report the accuracy of the models in handling anaphoric pronoun translation as well as coherence and cohesion using contrastive test sets. Finally, we report the results of human evaluation in terms of Multidimensional Quality Metrics (MQM) and analyse the correlation of the results obtained by the automatic metrics with human judgments." }
<?xml version="1.0" encoding="UTF-8"?> <modsCollection xmlns="http://www.loc.gov/mods/v3"> <mods ID="lopes-etal-2020-document"> <titleInfo> <title>Document-level Neural MT: A Systematic Comparison</title> </titleInfo> <name type="personal"> <namePart type="given">António</namePart> <namePart type="family">Lopes</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">M</namePart> <namePart type="given">Amin</namePart> <namePart type="family">Farajian</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Rachel</namePart> <namePart type="family">Bawden</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Michael</namePart> <namePart type="family">Zhang</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">André</namePart> <namePart type="given">F</namePart> <namePart type="given">T</namePart> <namePart type="family">Martins</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <originInfo> <dateIssued>2020-11</dateIssued> </originInfo> <typeOfResource>text</typeOfResource> <relatedItem type="host"> <titleInfo> <title>Proceedings of the 22nd Annual Conference of the European Association for Machine Translation</title> </titleInfo> <name type="personal"> <namePart type="given">André</namePart> <namePart type="family">Martins</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Helena</namePart> <namePart type="family">Moniz</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Sara</namePart> <namePart type="family">Fumega</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Bruno</namePart> <namePart type="family">Martins</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Fernando</namePart> <namePart type="family">Batista</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Luisa</namePart> <namePart type="family">Coheur</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Carla</namePart> <namePart type="family">Parra</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Isabel</namePart> <namePart type="family">Trancoso</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Marco</namePart> <namePart type="family">Turchi</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Arianna</namePart> <namePart type="family">Bisazza</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Joss</namePart> <namePart type="family">Moorkens</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Ana</namePart> <namePart type="family">Guerberof</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Mary</namePart> <namePart type="family">Nurminen</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Lena</namePart> <namePart type="family">Marg</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Mikel</namePart> <namePart type="given">L</namePart> <namePart type="family">Forcada</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <originInfo> <publisher>European Association for Machine Translation</publisher> <place> <placeTerm type="text">Lisboa, Portugal</placeTerm> </place> </originInfo> <genre authority="marcgt">conference publication</genre> </relatedItem> <abstract>In this paper we provide a systematic comparison of existing and new document-level neural machine translation solutions. As part of this comparison, we introduce and evaluate a document-level variant of the recently proposed Star Transformer architecture. In addition to using the traditional metric BLEU, we report the accuracy of the models in handling anaphoric pronoun translation as well as coherence and cohesion using contrastive test sets. Finally, we report the results of human evaluation in terms of Multidimensional Quality Metrics (MQM) and analyse the correlation of the results obtained by the automatic metrics with human judgments.</abstract> <identifier type="citekey">lopes-etal-2020-document</identifier> <location> <url>https://aclanthology.org/2020.eamt-1.24/</url> </location> <part> <date>2020-11</date> <extent unit="page"> <start>225</start> <end>234</end> </extent> </part> </mods> </modsCollection>
%0 Conference Proceedings %T Document-level Neural MT: A Systematic Comparison %A Lopes, António %A Farajian, M. Amin %A Bawden, Rachel %A Zhang, Michael %A Martins, André F. T. %Y Martins, André %Y Moniz, Helena %Y Fumega, Sara %Y Martins, Bruno %Y Batista, Fernando %Y Coheur, Luisa %Y Parra, Carla %Y Trancoso, Isabel %Y Turchi, Marco %Y Bisazza, Arianna %Y Moorkens, Joss %Y Guerberof, Ana %Y Nurminen, Mary %Y Marg, Lena %Y Forcada, Mikel L. %S Proceedings of the 22nd Annual Conference of the European Association for Machine Translation %D 2020 %8 November %I European Association for Machine Translation %C Lisboa, Portugal %F lopes-etal-2020-document %X In this paper we provide a systematic comparison of existing and new document-level neural machine translation solutions. As part of this comparison, we introduce and evaluate a document-level variant of the recently proposed Star Transformer architecture. In addition to using the traditional metric BLEU, we report the accuracy of the models in handling anaphoric pronoun translation as well as coherence and cohesion using contrastive test sets. Finally, we report the results of human evaluation in terms of Multidimensional Quality Metrics (MQM) and analyse the correlation of the results obtained by the automatic metrics with human judgments. %U https://aclanthology.org/2020.eamt-1.24/ %P 225-234
Markdown (Informal)
[Document-level Neural MT: A Systematic Comparison](https://aclanthology.org/2020.eamt-1.24/) (Lopes et al., EAMT 2020)
- Document-level Neural MT: A Systematic Comparison (Lopes et al., EAMT 2020)
ACL
- António Lopes, M. Amin Farajian, Rachel Bawden, Michael Zhang, and André F. T. Martins. 2020. Document-level Neural MT: A Systematic Comparison. In Proceedings of the 22nd Annual Conference of the European Association for Machine Translation, pages 225–234, Lisboa, Portugal. European Association for Machine Translation.