Abstract
SEBAMAT (semantics-based MT) is a Marie Curie project intended to con-tribute to the state of the art in machine translation (MT). Current MT systems typically take the semantics of a text only in so far into account as they are implicit in the underlying text corpora or dictionaries. Occasionally it has been argued that it may be difficult to advance MT quality to the next level as long as the systems do not make more explicit use of semantic knowledge. SEBAMAT aims to evaluate three approaches incorporating such knowledge into MT.- Anthology ID:
- 2020.eamt-1.66
- Volume:
- Proceedings of the 22nd Annual Conference of the European Association for Machine Translation
- Month:
- November
- Year:
- 2020
- Address:
- Lisboa, Portugal
- Editors:
- André Martins, Helena Moniz, Sara Fumega, Bruno Martins, Fernando Batista, Luisa Coheur, Carla Parra, Isabel Trancoso, Marco Turchi, Arianna Bisazza, Joss Moorkens, Ana Guerberof, Mary Nurminen, Lena Marg, Mikel L. Forcada
- Venue:
- EAMT
- SIG:
- Publisher:
- European Association for Machine Translation
- Note:
- Pages:
- 491–492
- Language:
- URL:
- https://aclanthology.org/2020.eamt-1.66
- DOI:
- Bibkey:
- Cite (ACL):
- Reinhard Rapp and George Tambouratzis. 2020. An Overview of the SEBAMAT Project. In Proceedings of the 22nd Annual Conference of the European Association for Machine Translation, pages 491–492, Lisboa, Portugal. European Association for Machine Translation.
- Cite (Informal):
- An Overview of the SEBAMAT Project (Rapp & Tambouratzis, EAMT 2020)
- Copy Citation:
- PDF:
- https://aclanthology.org/2020.eamt-1.66.pdf
Export citation
@inproceedings{rapp-tambouratzis-2020-overview, title = "An Overview of the {SEBAMAT} Project", author = "Rapp, Reinhard and Tambouratzis, George", editor = "Martins, Andr{\'e} and Moniz, Helena and Fumega, Sara and Martins, Bruno and Batista, Fernando and Coheur, Luisa and Parra, Carla and Trancoso, Isabel and Turchi, Marco and Bisazza, Arianna and Moorkens, Joss and Guerberof, Ana and Nurminen, Mary and Marg, Lena and Forcada, Mikel L.", booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation", month = nov, year = "2020", address = "Lisboa, Portugal", publisher = "European Association for Machine Translation", url = "https://aclanthology.org/2020.eamt-1.66", pages = "491--492", abstract = "SEBAMAT (semantics-based MT) is a Marie Curie project intended to con-tribute to the state of the art in machine translation (MT). Current MT systems typically take the semantics of a text only in so far into account as they are implicit in the underlying text corpora or dictionaries. Occasionally it has been argued that it may be difficult to advance MT quality to the next level as long as the systems do not make more explicit use of semantic knowledge. SEBAMAT aims to evaluate three approaches incorporating such knowledge into MT.", }
<?xml version="1.0" encoding="UTF-8"?> <modsCollection xmlns="http://www.loc.gov/mods/v3"> <mods ID="rapp-tambouratzis-2020-overview"> <titleInfo> <title>An Overview of the SEBAMAT Project</title> </titleInfo> <name type="personal"> <namePart type="given">Reinhard</namePart> <namePart type="family">Rapp</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">George</namePart> <namePart type="family">Tambouratzis</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <originInfo> <dateIssued>2020-11</dateIssued> </originInfo> <typeOfResource>text</typeOfResource> <relatedItem type="host"> <titleInfo> <title>Proceedings of the 22nd Annual Conference of the European Association for Machine Translation</title> </titleInfo> <name type="personal"> <namePart type="given">André</namePart> <namePart type="family">Martins</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Helena</namePart> <namePart type="family">Moniz</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Sara</namePart> <namePart type="family">Fumega</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Bruno</namePart> <namePart type="family">Martins</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Fernando</namePart> <namePart type="family">Batista</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Luisa</namePart> <namePart type="family">Coheur</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Carla</namePart> <namePart type="family">Parra</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Isabel</namePart> <namePart type="family">Trancoso</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Marco</namePart> <namePart type="family">Turchi</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Arianna</namePart> <namePart type="family">Bisazza</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Joss</namePart> <namePart type="family">Moorkens</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Ana</namePart> <namePart type="family">Guerberof</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Mary</namePart> <namePart type="family">Nurminen</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Lena</namePart> <namePart type="family">Marg</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Mikel</namePart> <namePart type="given">L</namePart> <namePart type="family">Forcada</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <originInfo> <publisher>European Association for Machine Translation</publisher> <place> <placeTerm type="text">Lisboa, Portugal</placeTerm> </place> </originInfo> <genre authority="marcgt">conference publication</genre> </relatedItem> <abstract>SEBAMAT (semantics-based MT) is a Marie Curie project intended to con-tribute to the state of the art in machine translation (MT). Current MT systems typically take the semantics of a text only in so far into account as they are implicit in the underlying text corpora or dictionaries. Occasionally it has been argued that it may be difficult to advance MT quality to the next level as long as the systems do not make more explicit use of semantic knowledge. SEBAMAT aims to evaluate three approaches incorporating such knowledge into MT.</abstract> <identifier type="citekey">rapp-tambouratzis-2020-overview</identifier> <location> <url>https://aclanthology.org/2020.eamt-1.66</url> </location> <part> <date>2020-11</date> <extent unit="page"> <start>491</start> <end>492</end> </extent> </part> </mods> </modsCollection>
%0 Conference Proceedings %T An Overview of the SEBAMAT Project %A Rapp, Reinhard %A Tambouratzis, George %Y Martins, André %Y Moniz, Helena %Y Fumega, Sara %Y Martins, Bruno %Y Batista, Fernando %Y Coheur, Luisa %Y Parra, Carla %Y Trancoso, Isabel %Y Turchi, Marco %Y Bisazza, Arianna %Y Moorkens, Joss %Y Guerberof, Ana %Y Nurminen, Mary %Y Marg, Lena %Y Forcada, Mikel L. %S Proceedings of the 22nd Annual Conference of the European Association for Machine Translation %D 2020 %8 November %I European Association for Machine Translation %C Lisboa, Portugal %F rapp-tambouratzis-2020-overview %X SEBAMAT (semantics-based MT) is a Marie Curie project intended to con-tribute to the state of the art in machine translation (MT). Current MT systems typically take the semantics of a text only in so far into account as they are implicit in the underlying text corpora or dictionaries. Occasionally it has been argued that it may be difficult to advance MT quality to the next level as long as the systems do not make more explicit use of semantic knowledge. SEBAMAT aims to evaluate three approaches incorporating such knowledge into MT. %U https://aclanthology.org/2020.eamt-1.66 %P 491-492
Markdown (Informal)
[An Overview of the SEBAMAT Project](https://aclanthology.org/2020.eamt-1.66) (Rapp & Tambouratzis, EAMT 2020)
- An Overview of the SEBAMAT Project (Rapp & Tambouratzis, EAMT 2020)
ACL
- Reinhard Rapp and George Tambouratzis. 2020. An Overview of the SEBAMAT Project. In Proceedings of the 22nd Annual Conference of the European Association for Machine Translation, pages 491–492, Lisboa, Portugal. European Association for Machine Translation.