@inproceedings{antony-etal-2020-leveraging,
title = "Leveraging Multilingual Resources for Language Invariant Sentiment Analysis",
author = "Antony, Allen and
Bhattacharya, Arghya and
Goud, Jaipal and
Mamidi, Radhika",
editor = "Martins, Andr{\'e} and
Moniz, Helena and
Fumega, Sara and
Martins, Bruno and
Batista, Fernando and
Coheur, Luisa and
Parra, Carla and
Trancoso, Isabel and
Turchi, Marco and
Bisazza, Arianna and
Moorkens, Joss and
Guerberof, Ana and
Nurminen, Mary and
Marg, Lena and
Forcada, Mikel L.",
booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation",
month = nov,
year = "2020",
address = "Lisboa, Portugal",
publisher = "European Association for Machine Translation",
url = "https://aclanthology.org/2020.eamt-1.9",
pages = "71--79",
abstract = "Sentiment analysis is a widely researched NLP problem with state-of-the-art solutions capable of attaining human-like accuracies for various languages. However, these methods rely heavily on large amounts of labeled data or sentiment weighted language-specific lexical resources that are unavailable for low-resource languages. Our work attempts to tackle this data scarcity issue by introducing a neural architecture for language invariant sentiment analysis capable of leveraging various monolingual datasets for training without any kind of cross-lingual supervision. The proposed architecture attempts to learn language agnostic sentiment features via adversarial training on multiple resource-rich languages which can then be leveraged for inferring sentiment information at a sentence level on a low resource language. Our model outperforms the current state-of-the-art methods on the Multilingual Amazon Review Text Classification dataset [REF] and achieves significant performance gains over prior work on the low resource Sentiraama corpus [REF]. A detailed analysis of our research highlights the ability of our architecture to perform significantly well in the presence of minimal amounts of training data for low resource languages.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="antony-etal-2020-leveraging">
<titleInfo>
<title>Leveraging Multilingual Resources for Language Invariant Sentiment Analysis</title>
</titleInfo>
<name type="personal">
<namePart type="given">Allen</namePart>
<namePart type="family">Antony</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Arghya</namePart>
<namePart type="family">Bhattacharya</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jaipal</namePart>
<namePart type="family">Goud</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Radhika</namePart>
<namePart type="family">Mamidi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 22nd Annual Conference of the European Association for Machine Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">André</namePart>
<namePart type="family">Martins</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Helena</namePart>
<namePart type="family">Moniz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Fumega</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bruno</namePart>
<namePart type="family">Martins</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fernando</namePart>
<namePart type="family">Batista</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Luisa</namePart>
<namePart type="family">Coheur</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carla</namePart>
<namePart type="family">Parra</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Isabel</namePart>
<namePart type="family">Trancoso</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marco</namePart>
<namePart type="family">Turchi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Arianna</namePart>
<namePart type="family">Bisazza</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joss</namePart>
<namePart type="family">Moorkens</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ana</namePart>
<namePart type="family">Guerberof</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mary</namePart>
<namePart type="family">Nurminen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lena</namePart>
<namePart type="family">Marg</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mikel</namePart>
<namePart type="given">L</namePart>
<namePart type="family">Forcada</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Association for Machine Translation</publisher>
<place>
<placeTerm type="text">Lisboa, Portugal</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Sentiment analysis is a widely researched NLP problem with state-of-the-art solutions capable of attaining human-like accuracies for various languages. However, these methods rely heavily on large amounts of labeled data or sentiment weighted language-specific lexical resources that are unavailable for low-resource languages. Our work attempts to tackle this data scarcity issue by introducing a neural architecture for language invariant sentiment analysis capable of leveraging various monolingual datasets for training without any kind of cross-lingual supervision. The proposed architecture attempts to learn language agnostic sentiment features via adversarial training on multiple resource-rich languages which can then be leveraged for inferring sentiment information at a sentence level on a low resource language. Our model outperforms the current state-of-the-art methods on the Multilingual Amazon Review Text Classification dataset [REF] and achieves significant performance gains over prior work on the low resource Sentiraama corpus [REF]. A detailed analysis of our research highlights the ability of our architecture to perform significantly well in the presence of minimal amounts of training data for low resource languages.</abstract>
<identifier type="citekey">antony-etal-2020-leveraging</identifier>
<location>
<url>https://aclanthology.org/2020.eamt-1.9</url>
</location>
<part>
<date>2020-11</date>
<extent unit="page">
<start>71</start>
<end>79</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Leveraging Multilingual Resources for Language Invariant Sentiment Analysis
%A Antony, Allen
%A Bhattacharya, Arghya
%A Goud, Jaipal
%A Mamidi, Radhika
%Y Martins, André
%Y Moniz, Helena
%Y Fumega, Sara
%Y Martins, Bruno
%Y Batista, Fernando
%Y Coheur, Luisa
%Y Parra, Carla
%Y Trancoso, Isabel
%Y Turchi, Marco
%Y Bisazza, Arianna
%Y Moorkens, Joss
%Y Guerberof, Ana
%Y Nurminen, Mary
%Y Marg, Lena
%Y Forcada, Mikel L.
%S Proceedings of the 22nd Annual Conference of the European Association for Machine Translation
%D 2020
%8 November
%I European Association for Machine Translation
%C Lisboa, Portugal
%F antony-etal-2020-leveraging
%X Sentiment analysis is a widely researched NLP problem with state-of-the-art solutions capable of attaining human-like accuracies for various languages. However, these methods rely heavily on large amounts of labeled data or sentiment weighted language-specific lexical resources that are unavailable for low-resource languages. Our work attempts to tackle this data scarcity issue by introducing a neural architecture for language invariant sentiment analysis capable of leveraging various monolingual datasets for training without any kind of cross-lingual supervision. The proposed architecture attempts to learn language agnostic sentiment features via adversarial training on multiple resource-rich languages which can then be leveraged for inferring sentiment information at a sentence level on a low resource language. Our model outperforms the current state-of-the-art methods on the Multilingual Amazon Review Text Classification dataset [REF] and achieves significant performance gains over prior work on the low resource Sentiraama corpus [REF]. A detailed analysis of our research highlights the ability of our architecture to perform significantly well in the presence of minimal amounts of training data for low resource languages.
%U https://aclanthology.org/2020.eamt-1.9
%P 71-79
Markdown (Informal)
[Leveraging Multilingual Resources for Language Invariant Sentiment Analysis](https://aclanthology.org/2020.eamt-1.9) (Antony et al., EAMT 2020)
ACL