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Foreword from the General Chair

Bem-vindas e bem-vindos!

As president of the European Association for Machine Translation (EAMT) and General
Chair of the 22nd Annual Conference of the EAMT, it’s a pleasure for me to write these opening
words to the Proceedings of EAMT 2020.

But on the other hand, I have some mixed feeling when I write these lines. Due to the
COVID-19 crisis, we have not been able to meet in Lisbon, in person, in May. And that’s so
sad.

The organizers have reacted swiftly to make EAMT 2020 possible. First, we postponed it in
hopes that we would be able to meet in November. But then reality struck and it was clear that
not even that would be possible. Finally, it was decided that EAMT 2020 will be an on-line
conference, from November 3 to November 5, 2020. We'll still have a single-room conference
(including boaster sessions for papers accepted as posters), and we will do our best to make it
as interactive and lively as possible. Details will be published in the EAMT 2020 website. Of
course, registration fees have been reduced accordingly.

Reviewing had finished and acceptance decisions had been made, so it didn’t make much
sense to hold the publication of these Proceedings; here they are! Authors can now freely
disseminate the papers in this volume. You can see them as a snapshot of active research and
development by the best groups in Europe and around the world — I am sure authors will add
new and interesting results when we meet.

You’ll soon see an attractive three-day, four-track programme put together by our pro-
gramme chairs: Arianna Bisazza and Marco Turchi, research track co-chairs, Mary Nurminen
and Lena Marg, user track co-chairs, and Ana Guerberof and Joss Moorkens, translator track
co-chairs; I thank them for the hard work. Finally, as General Chair, I took care of the fourth
track, the projects/products track. The technical coordination of the reviewing was done by
Carolina Scarton (thanks, Carol!). I also feel honored to have Lucia Specia (Imperial College
London) as our invited speaker.

To give you a historical note, the EAMT started organizing annual workshops in 1996; later,
these workshops became annual conferences, and were hosted all around Europe. Years ago,
the venue steadily moved from west to east: from Barcelona (2009) to Saint-Raphaél (2010)
to Leuven (2011) to Trento (2012) to Dubrovnik (2014) —after skipping one year to host the

successful world-wide MT Summit 2013 in Nice—; then it turned around to go west again at



Antalya (2015), to go to Riga (2016), then Prague (2017), then Alacant (2018) and now —after
skipping another year to host another successful MT Summit in Dublin— well, virtually, Lisbon.
It’s hard to go further westwards, so the next venue will take place east from Lisbon, as we will
announce in November.

By the way, if you have not done so yet, and live in Europe, North Africa, or the Middle East,
please consider joining the EAMT. Our membership rates are low, particularly for students
and people not based in Europe. You will benefit from discounts when attending not only
our conferences, but also the conferences held by our partner associations the Asia-Pacific
Association for Machine Translation (AAMT) and the Association for Machine Translation in
the Americas (AMTA). You will also have an exclusive chance to benefit from funding for your
activities related to machine translation. And perhaps you can get even more involved and
participate in serving the European machine translation community by becoming a member of
the Executive Committee of the EAMT.

EAMT 2020 would have never been possible without the generous offer to host and the hard
work subsequently done by the local organizing committee at Unbabel, but also at the Instituto
Superior Técnico, the Instituto de Engenharia de Sistemas e Computadores, Investiga¢ao e
Desenvolvimento and the Instituto Universitdrio de Lisboa, particularly André Martins, Helena
Moniz, Sara Fumega, Bruno Martins, Fernando Batista, Luisa Coheur, Carla Parra Escartin,
and Isabel Trancoso.

It is also with great pleasure that I thank our sponsors Banco Portugués de Investimento
(gold sponsor), STAR Group and Microsoft (silver sponsors), Unbabel, text&form, TAUS,
Pangeanic, and Crosslang (bronze sponsors), and Apertium and Prompsit (supporting spon-
sors), particularly for the flexibility shown when adapting to the changes in how the conference
is run. EAMT 2020 would not be possible without the amazing engagement of these companies.
I am also thankful for the ample support received from the local institutions in Lisbon.

Finally, I would like to thank future EAMT 2020 attendees for participating but also for
their understanding. I hope the conference leads to new friendships —first virtual, and soon, I
hope, face to face— and all sorts of fruitful collaboration in the field of translation technologies.

Oh, and please be sure to visit Lisbon when they let us travel freely. It was there waiting

for us, and it will be when this nightmare is over. I'm looking forward to it.

(I wish we were in) Lisboa, 2020

Mikel L. Forcada

President of the EAMT

General Chair of EAMT 2020

Professor of Computer Languages and Systems Universitat d’Alacant
Alacant, Valencian Country, Spain.

Email: m1f@ua.es
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Message from the Organising

Committee Chairs

On behalf of the organising committee, we want to take this opportunity to give you a big thank
you for joining us in the 22nd Annual Conference of the European Association for Machine
Translation, EAMT 2020.

Sadly, this year, the COVID-19 crisis forced us to a last minute change, and we won’t be
able to welcome you to Lisbon, as we wished so much. However, Unbabel and INESC-ID are
extremely proud and honored to host the EAMT conference in fully virtual mode for the first
time, from the 3rd to the 5th of November of 2020.

This was of course a very hard decision. In the hope that we could still host a presencial con-
ference, we started by postponing the dates to the first week of November and securing a venue
at Instituto Superior Técnico. However, it later became clear that a physical meeting would
be impossible under the current circumstances, and together with the board of the European
Association for Machine Translation we decided to make EAMT 2020 an on-line conference,
with reduced registration fees. We would like to thank all the support from the European Asso-
ciation for Machine Translation in this process, in particular from its president Mikel Forcada
and its secretary Carol Scarton for all their help in making this change happen smoothly. We
also thank the sponsors and supporting organizations for their flexibility in adapting to a virtual
conference.

We are sure EAMT 2020 will be a success with the contribution of everyone! According
to our predictions, we expect this edition of the EAMT conference to have one of the highest
number of attendees ever. We will have a single-room conference with live talks and booster
sessions for papers accepted as posters. We will do our best to make it as interactive and lively
as possible. We will plan for virtual social events keeping the best spirit of Lisbon. Stay tuned!

We look forward to your active participation during the three days of the conference. Do not
hesitate to ask questions when the session chairs invite you to do so. Please, contribute to make
this edition of the conference a fruitful forum where a multidisciplinary group of researchers,
developers, practitioners, leaders, vendors, users, and translators all share experiences and
motivating ideas.

Finally, we would like to express our sincere appreciation to the people and organisations
that have made this conference possible: the European Association for Machine Translation,

in particular Mikel Forcada and Carol Scarton for all their support in changing the conference
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to virtual mode, our gold sponsor (Banco Portugués de Investimento), Silver sponsors (STAR
Group and Microsoft), Bronze sponsors (Unbabel, Text&Form, TAUS, Pangeanic, and Cross-
lang), supporters (Apertium and Prompsit), institutional partners Unbabel, Instituto Superior
Técnico, the Instituto de Engenharia de Sistemas e Computadores, Investigacao e Desenvolvi-
mento and the Instituto Universitdirio de Lisboa, programme chairs (Marco Turchi, Arianna
Bisazza, Joss Moorkens, Ana Guerberof, Mary Nurminen, and Lena Marg), keynote speaker
(Lucia Specia), and, finally but so importantly, our colleagues Sara Fumega, Bruno Martins,
Fernando Batista, Luisa Coheur, Carla Parra Escartin, and Isabel Trancoso, who have worked

extraordinarily hard to make this conference as pleasant and inspiring as possible.

André Martins Helena Moniz
IST and Unbabel INESC-ID and Unbabel
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Preface by the Programme Chairs

It is our pleasure to welcome you to the 22nd annual conference of the European Association
for Machine Translation (EAMT) to be held remotely from November 3 to 5, 2020. Organizing
this edition in the time of a pandemic that brought about traveling and many other restrictions
has been a sort of roller coaster. The whole organizing committee has worked hard to maintain
the usual standards of quality and confirm the EAMT conference as the most important event
in Europe in the area of machine translation for researchers, users and professional translators.

Following the success of the previous edition, this year once again there are four tracks: re-
search, user, translators, and project/product. The research track concerns novel and significant
research results in any aspect of MT and related areas while the user track reports users’ experi-
ences with MT in industry, government, NGOs, as well as innovative uses of MT. The translator
track focuses on translators’ interaction with MT, including MT evaluation using professional
translators, post-editing practices and tools, usability, and pricing. The project/product track
offers projects and products the opportunity to be presented to the wide audience of the con-

ference.

This year we have received 47 submissions to the research track, 15 submissions to the user
track, 13 submissions to the translators’ track, and 22 descriptions of projects and products.
Each submission to the research, user and translator tracks was peer reviewed by two or three
independent members of the Programme Committee depending on the specific track. In the
research track, 25 papers (53%) were accepted for publication, whereas 12 papers (80%) were
accepted for the user track, and 9 papers (69%) for the translators track. Aside from regular
papers from the four tracks, the programme includes an invited talk by Lucia Specia, from the
University of Sheffield and Imperial College London, on “Exploring NMT’s bag of tricks for
translation quality estimation and evaluation”. We will also have a presentation by the winner
of the EAMT Best Thesis Award, Felix Stahlberg, with his thesis ”The Roles of Language
Models and Hierarchical Models in Neural Sequence-to-Sequence Prediction” (University of
Cambridge).

We would like to thank everyone who, by offering their flexibility and extra efforts, made it
possible to deal with continuously moving deadlines. In particular, we thank the Programme
Committee members whose names are listed below for their high-quality reviews and recom-
mendation which have been very useful for the Programme Chairs to make decisions. We would
also like to thank all the authors for trying their best to incorporate the reviewers’ suggestions

when preparing the final versions of their papers. For the papers which were not accepted, we
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hope that the reviewers’ comments will be useful for improving them. Finally, thanks to Mikel

Forcada and Carol Scarton for all of their help and advice!

Arianna Bisazza

University of Groningen

Joss Moorkens

Dublin City University

Ana Guerberof-Arenas

University of Surrey

Marco Turchi

Fondazione Bruno Kessler
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Invited Speech

Exploring NMT’s bag of tricks for translation quality estimation
and evaluation

Lucia Specia, Imperial College and Sheffield University, UK

Neural machine translation (NMT) has become the de facto automated translation technol-
ogy for language pairs where enough parallel data is available. Nevertheless, translation models
are not bulletproof. Given the generally very fluent translations produced by these models,
automatically assessing their general quality is arguably more challenging, yet paramount. In
this talk I will argue that the solution to this problem can to a large extent be provided by
NMT models themselves. I will discuss experiments demonstrating that such models provide
valuable information for both translation evaluation and quality estimation. Namely, they allow
for better supervised as well as fully unsupervised quality estimation models, as well as more

for reliable multi-reference evaluation approaches.






EAMT 2019 Best Thesis Award —
Anthony C Clarke Award

Ten PhD theses defended in 2019 were received as candidates for the 2019 edition of the Anthony
C Clarke Award - EAMT Best Thesis Award, and all ten were eligible. 36 reviewers and
six EAMT Executive Committee members were recruited to examine and score the theses,
considering how challenging the problem tackled in each thesis was, how relevant the results
were for machine translation as a field, and what the strength of its impact in terms of scientific
publications was. Two EAMT Executive Committee members also analysed all theses.

The year of 2019 was again a very good year for PhD theses in machine translation. The
scores of the best theses were very close, which made it very hard to select a winner. A panel
of five EAMT Executive Committee members (André Martins, Lucia Specia, Khalil Sima’an,
Carolina Scarton, and Mikel L. Forcada) was assembled to process the reviews and select a
winner.

The panel has decided to grant the 2019 edition of the EAMT Best Thesis Award, Anthony
C Clarke Award, to Felix Stahlberg for his thesis “The Roles of Language Models and Hierar-
chical Models in Neural Sequence-to-Sequence Prediction”, University of Cambridge, supervised
by Bill Byrne.






The Roles of Language Models and Hierarchical Models in Neural
Sequence-to-Sequence Prediction

Felix Stahlberg'

Department of Engineering
University of Cambridge
Trumpington St, Cambridge CB2 1PZ, UK
fs439@cantab.ac.uk

With the advent of deep learning, research
in many areas of machine learning is converg-
ing towards the same set of methods and mod-
els. For example, long short-term memory net-
works (Hochreiter and Schmidhuber, 1997) are not
only popular for various tasks in natural language
processing (NLP) such as speech recognition, ma-
chine translation, handwriting recognition, syntac-
tic parsing, etc., but they are also applicable to
seemingly unrelated fields such as bioinformat-
ics (Min et al., 2016). Recent advances in con-
textual word embeddings like BERT (Devlin et al.,
2019) boast with achieving state-of-the-art results
on 11 NLP tasks with the same model. Before
deep learning, a speech recognizer and a syntac-
tic parser used to have little in common as systems
were much more tailored towards the task at hand.

At the core of this development is the tendency
to view each task as yet another data mapping
problem, neglecting the particular characteristics
and (soft) requirements that tasks often have in
practice. This often goes along with a sharp break
of deep learning methods with previous research in
the specific area. This thesis can be understood as
an antithesis to the prevailing paradigm. We show
how traditional symbolic statistical machine trans-
lation (Koehn, 2009) models can still improve neu-
ral machine translation (Kalchbrenner and Blun-
som, 2013; Sutskever et al., 2014; Bahdanau et al.,
2015, NMT) while reducing the risk of common
pathologies of NMT such as hallucinations and ne-
ologisms. Other external symbolic models such
as spell checkers and morphology databases help
neural models to correct grammatical errors in text.

© 2020 The authors. This article is licensed under a Creative
Commons 3.0 licence, no derivative works, attribution, CC-
BY-ND.

"Now at Google Research.

We also focus on language models that often do not
play a role in vanilla end-to-end approaches and
apply them in different ways to word reordering,
grammatical error correction, low-resource NMT,
and document-level NMT. Finally, we demonstrate
the benefit of hierarchical models in sequence-to-
sequence prediction. Hand-engineered covering
grammars are effective in preventing catastrophic
errors in neural text normalization systems. Our
operation sequence model for interpretable NMT
represents translation as a series of actions that
modify the translation state, and can also be seen
as derivation in a formal grammar.

This thesis also focuses on the decoding aspect
of neural sequence models. We argue that NMT
decoding is very similar to navigating through a
weighted graph structure or finite state machine,
with the only difference that the state space may
not be finite. This view enables us to use a wide
range of search algorithms, and provides a strong
formal framework for pairing NMT with other
kinds of models. In particular, we apply exact
shortest path search algorithms for graphs, such as
depth-first search, to NMT, and show that beam de-
coding fails to find the global best model score in
most cases. However, these search errors, para-
doxically, often prevent the decoder from suffer-
ing from a frequent but very serious model error in
NMT, namely that the empty hypothesis often has
the global best model score.

The main contributions of this thesis are im-
plemented in a novel open-source NMT decoding
framework called SGNMT? which allows paring
neural translation models with different kinds of
constraints and symbolic models. SGNMT is com-
patible to a range of popular toolkits such as Ten-

https://ucam-smt.github.io/sgnmt/html/
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sor2Tensor (Vaswani et al., 2018) and fairseq (Ott
et al., 2019) for neural models, KenLM (Heafield,
2011) for language modelling, and OpenFST (Al-
lauzen et al., 2007) for finite state transducers.
SGNMT has been used for: (1) teaching as
SGNMT has been used for course work and stu-
dent theses in the MPhil in Machine Learning and
Machine Intelligence at the University of Cam-
bridge, (2) research as most of the research work
of the Cambridge MT group, including four suc-
cessful WMT submissions, is based on SGNMT,
and (3) technology transfer as SGNMT has helped
to transfer research findings from the laboratory to
the industry, eg. into a product of SDL plc.

The Apollo repository of the University of
Cambridge provides open access to the full the-
sis (https://doi.org/10.17863/CAM.
49422).
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Abstract

We conducted a survey to understand the
impact of machine translation and post-
editing awareness on comprehension of
and trust in messages disseminated to
prepare the public for a weather-related
crisis, i.e. flooding. The translation direc-
tion was English—Italian. Sixty-one par-
ticipants—all native Italian speakers with
different English proficiency levels—
answered our survey. Each participant
read and evaluated between three and six
crisis messages using ratings and open-
ended questions on comprehensibility
and trust. The messages were in English
and Italian. All the Italian messages had
been machine translated and post-edited.
Nevertheless, participants were told that
only half had been post-edited, so that we
could test the impact of post-editing
awareness. We could not draw firm con-
clusions when comparing the scores for
trust and comprehensibility assigned to
the three types of messages—English,
post-edits, and purported raw outputs.
However, when scores were triangulated
with open-ended answers, stronger pat-
terns were observed, such as the impact
of fluency of the translations on their
comprehensibility and trustworthiness.
We found correlations between compre-
hensibility and trustworthiness, and iden-
tified other factors influencing these as-
pects, such as the clarity and soundness
of the messages. We conclude by outlin-

© 2020 The authors. This article is licensed under
a Creative Commons 3.0 licence, no derivative works, at-
tribution, CC-BY-ND.

patrick.cadwell}

ing implications for crisis preparedness,
limitations, and areas for future research.

1 Introduction

Societies are becoming increasingly multicultural
and multilingual, mainly as a result of economic
migration and displacement (O'Brien and Federi-
ci, 2019). In Ireland, for example, there are more
than 500 thousand non-Irish nationals, the major-
ity of whom come from a country where English
is not the official language, e.g. Poland, Lithua-
nia, Brazil, and Italy (Central Statistics Office,
2016). Non-native speakers of a language—and
especially those with limited proficiency—need
to overcome considerable communication chal-
lenges in the contexts of crises (Santos-
Hernandez and Morrow, 2013; Sherly et al.,
2015).

Taking again Ireland as an example, flooding
is the most common hazard that the country
needs to manage (Jeffers, 2011). When substan-
tial, flooding poses a threat to infrastructure,
business, and also people’s health (Major Emer-
gency Management, 2016). In order to be safe
and act upon the messages sent by emergency
responders, linguistically diverse communities
need to be able to comprehend and trust those
messages (Alexander and Pescaroli, 2019). Ma-
chine translation (MT) and post-editing (PE) can
play a role in crisis communication but their ap-
plication needs careful consideration.

This paper describes the results of a survey
whose goal was to address two important gaps in
relation to the role of MT and PE as enablers of
multilingual communication in crises. Specifical-
ly, we set out to gather empirical evidence on the
impact of MT and of PE awareness on compre-
hension of and trust in messages disseminated by
emergency responders to prepare the public for a
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specific weather-related crisis: flooding. The
translation direction under analysis was English
to Italian (see Section 3 for our research ques-
tions). The choice of this translation direction
was motivated by the substantial number of na-
tive speakers of lItalian living in English-
speaking countries where flooding is common,
such as the United Kingdom and Ireland (Central
Statistics Office, 2016).

It is worth underlining the lack of clear dis-
tinctions between the concepts of crisis, emer-
gency, disaster, or hazard. For the purpose of
this study, we adopted a broad definition of cri-
sis, understood as a non-routine and disruptive
event, that poses a threat, and that usually in-
volves the phases of preparation, response, and
recovery (Alexander, 2002; Cadwell et al.,
2019).

The remainder of this paper is organized as
follows: Section 2 reviews and summarizes relat-
ed work on MT, PE, comprehension, and trust,
with a special focus on crisis contexts. Section 3
presents our research questions and the method-
ology that we adopted in order to answer them.
Section 4 reports on the results of our survey,
which are then discussed in Section 5, along with
implications, limitations, and avenues for future
research.

2

Translation of crisis information into the first
language of the target audience facilitates com-
prehension, as has been shown, for example, in
the case of the 2014 Ebola outbreak (O'Brien and
Cadwell, 2017). However, the importance of
translation in crises is still either not acknowl-
edged or discussed only superficially in policy
documents and institutional checklists (O'Brien
et al., 2018; O'Brien and Federici, 2019). This is
surprising when considering that misunderstand-
ings due to lack of translation have often resulted
in increased vulnerability and loss of lives (San-
tos-Hernandez and Morrow, 2013; Alexander
and Pescaroli, 2019).

In addition to comprehension, the language in
which information is conveyed can influence
trust in the message, particularly in crisis situa-
tions (Translators without Borders, 2019). Previ-
ous research on trust, translation, and crises has
mainly focused on how translation influences
reasoning about trust among people affected by a
crisis (Cadwell, 2015), with trust emerging as
one of the challenges in the communication ef-
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forts of humanitarian organisations, along with
low literacy levels and cultural sensitivity
(Federici et al., 2019).

In crisis situations, MT has been a component
of some communications, as shown, for instance,
during the Haiti earthquake (Lewis, 2010) and,
more recently, in refugee settings (Translators
without Borders, 2016). MT is particularly help-
ful when large quantities of texts need quick
translations into multiple languages (Cadwell et
al., 2019). The utility of MT in crisis settings
involving low-resource languages has also been
empirically tested (Cadwell et al., 2019).

The relationship between MT and trust has re-
ceived some attention since machine-translated
outputs are far from flawless and fully accurate,
even after the quality improvements introduced
by the neural paradigm (Toral et al., 2018), thus
often requiring PE. Research has revolved
around approaches to identify machine-translated
words, sentences or documents that pass a prede-
termined quality threshold and are therefore
more trustworthy (Soricut and Echihabi, 2010).

The availability of these confidence, or trust,
scores seems to be welcomed by translators
(Moorkens and O'Brien, 2013), but the scores
should be accompanied by an explanation of how
they were obtained (Cadwell et al., 2017). Atten-
tion has also been given to the level of trust that
professional translators attribute to machine-
translated outputs and specific MT engines
(Guerberof, 2013; Teixeira, 2014; Cadwell et al.,
2017). Furthermore, lack of trust in MT has
emerged as one of the reasons for its non-
adoption among language service providers (Por-
ro Rodriguez et al., 2017). Previous works have
also focused on students, with mixed results—
from a general lack of trust (Koponen, 2015;
Briggs, 2018), to a tendency to almost uncritical-
ly trust the output (Depraetere, 2010).

More relevant to our research, a limited num-
ber of studies have focused on end users of
MT—who often read translations for gist under-
standing (Specia and Shah, 2018)—and on their
reliance on MT to locate information on websites
(Gaspari, 2007), as well as on their tendency to
use MT to translate from languages or documents
of which they already have some knowledge,
which might indicate a lack of complete trust in
the output (Nurminen and Papula, 2018).

Research has also focused on the broader areas
of acceptability, usability, readability, and com-



prehensibility of machine-translated texts among
end users, and on how these aspects are influ-
enced by different PE levels (Castilho and O'Bri-
en, 2016; Screen, 2019). However, most of the
research so far has focused on technical docu-
ments.

Accordingly, there is a lack of empirical evi-
dence on: (i) the potential benefits of MT (as op-
posed to lack of translation) for end users’ com-
prehension of and trust in crisis communication;
and (ii) the potential impact on comprehension
and trust of being aware that crisis messages
have been post-edited. We set out to fill these
research gaps.

3

3.1 Research Questions

Methodology

Having in mind the research gaps outlined in
Section 2.2, we conducted a survey to address
the following research questions (RQ):

RQ1. What is the impact of machine transla-
tion on comprehension of and trust in messages
disseminated to prepare the public for a weather-
related crisis?

RQ2. What is the impact of post-editing
awareness on comprehension of and trust in
messages disseminated to prepare the public for
a weather-related crisis?

As specified in Section 1, the translation direc-
tion under analysis was English to Italian.

3.2 Survey Setup and Circulation

All of the survey questions and instructions were
in Italian. The survey received approval from
Dublin City University Research Ethics Commit-
tee (DCUREC/2019/209). It was preceded by a
plain language statement and an informed con-
sent form (also in Italian) describing the research
in lay terms for the participants.

Initially, the survey targeted native speakers of
Italian living in English-speaking countries, as
they would represent a realistic audience for cri-
sis messages delivered by emergency responders
in English. However, an initial analysis of the
responses from this pool of Italian participants
showed that their self-reported level of English
was very high (Section 4.1). Accordingly, to
gather data from Italian speakers with lower lev-
els of English proficiency—thus gaining a
broader range of perspectives—we also circulat-
ed a slightly modified version of the survey
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among native speakers of Italian living in Italy
(see Section 3.3 for details on the slightly modi-
fied version). These participants were also a real-
istic audience considering the high number of
Italians who travel from Italy to English-
speaking countries for tourism, school- or busi-
ness-related purposes (Tourism Ireland, 2018).

The survey in both its versions was circulated
online through word-of-mouth; social media; and
newsletters from universities, Italian embassies,
and organisations promoting Italian culture in
English-speaking countries (from the United
States, to Ireland, to New Zealand).

3.3 Survey Structure and Experimental De-
sign

The survey began with two questions to check
participants’ eligibility, namely: (i) that their na-
tive language was Italian; and (ii) that they lived
in an English-speaking country. In the version of
the survey targeting Italians in Italy, the second
eligibility question was not present.

The survey then continued with a series of
questions on the participants’ demographic char-
acteristics and background, namely their age,
gender, self-reported level of English proficien-
cy, frequency of use of English, familiarity with
MT systems, and reasons for their use. With re-
gard to the questions on self-reported English
proficiency and on the frequency of use of the
English language, these questions were taken
from Anderson et al. (2018), and they involved
asking participants: (i) to rate their English con-
versation, writing, reading, and listening skills on
a scale from 1 (low) to 5 (high); and (ii) to indi-
cate how often they spoke, wrote, listened, and
read in English. Native speakers of lItalian in
English-speaking countries were also asked
about how much time they had lived abroad, and
the frequency of flooding in their country of res-
idence (Section 4.1).

The participants were subsequently presented
with information and instructions regarding the
experimental tasks. Specifically, they would first
be shown three messages dealing with prepara-
tion for a flooding crisis: one message would be
in English, while the other two would be Italian
translations of two different messages. They
were also told that, of the two translations, one
had been produced by Google Translate and had
not been corrected by anyone, while the other
had also been produced by Google Translate but
then corrected by a native speaker of Italian. We



used corrected (rather than post-edited) because
our participants might not have been familiar
with the concept of PE. We also specified that
we would let them know which MT output had
been post-edited/corrected beforehand.

At this stage, we used deception since both
machine-translated messages had actually been
post-edited by the first author (see Section 3.4 for
details on PE level). We used deception for two
reasons. First, if we had not post-edited one of
the two machine-translated messages, we would
have introduced MT quality as a confounding
variable—in other words, the different quality of
the two machine-translated messages would have
been likely to influence comprehensibility and
trust scores. By post-editing both outputs, we
ensured quality was comparable, and this al-
lowed us to determine whether awareness of PE
in itself influenced scores of comprehensibility
and trust given by end users. Secondly, due to the
critical nature of the messages, we deemed it
risky to circulate unedited content with potential
errors.

We adopted a within-subjects design whereby,
for each of the three messages (one in English
and two Italian translations), each participant was
instructed to answer the following questions:

(i) How much do you trust this message on a
scale from 1 (don’t trust it at all) to 4 (trust it
completely)?

(ii) How likely are you to comply with these
instructions on a scale from 1 (very unlikely) to 4
(very likely)?

(iii) How comprehensible do you find this
message on a scale from 1 (totally incomprehen-
sible) to 4 (easily comprehensible)?

All participants read and evaluated the same
messages, and each message was always seen in
the same condition. We added a question on
compliance as an additional measure of trust (Liu
et al., 2018). We used four-point scales to avoid
mid-point bias. For each of the three questions,
participants were also given the option to explain
the reasons behind their scores as answers to
open-ended questions. Finally, after reading and
scoring the first set of three messages, partici-
pants could either conclude the survey, or read
and evaluate a set of three more messages. To
counterbalance a potential fatigue effect, the or-
der in which the English message and the two
Italian translations were presented to participants
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varied between the first and the second set of
messages, but not within set.

3.4 Experimental Materials

We took the crisis preparedness messages from
the Irish website Be Winter Ready.* The PE ap-
plied to the machine-translated messages can be
classified as full PE since we aimed to produce
outputs that were both fluent and accurate
(TAUS, 2010). Average BLEU score based on
comparisons between raw and post-edited mes-
sages was 55.76. However, as the extracts in Sec-
tion 4.2 show, a few participants believed that
the fluency could have been improved further.

Since the readability level of the English
source messages—both the one that we kept in
English and the ones that we machine translated
into Italian—might have represented a confound-
ing variable influencing comprehensibility
scores, we selected messages with a similar or
almost similar readability level. Specifically, ac-
cording to the Flesch-Kincaid Grade Level for-
mula, all English messages could be understood
by readers between 11 and 16 years of age.

To further ensure comparability, the three
messages in each of the two sets (Section 3.3)
began with the same introductory sentence. The
three messages in the first set all began with “If
you find that you are in a flood prone area, there
are a number of steps that you can take to make
your property more resilient to flooding. For ex-
ample...”, as they dealt with property protection.
On the other hand, the three messages in the sec-
ond set revolved around people protection and
began with the introductory sentence “If you find
that you are in a flood prone area, there are a
number of steps that you can take. For exam-
ple...”. These introductory sentences were then
followed by specific instructions, such as “As-
sess if your property is at risk from flooding” in
the first set, or “Have medication to hand (if
needed)” in the second set. To avoid a learning
effect, the three instructions in each set were dif-
ferent.

4 Results

4.1 Participants’ Background

A total of 61 participants took part in the survey.
All the participants were native speakers of
Italian, with 48 of them living in an English-

! The Be Winter Ready website is available here:
https://www.winterready.ie/en




speaking country and 13 living in Italy. Most
participants were aged between 29-39 (46%),
followed by participants aged 40-50 (29%). We
achieved good balance between male (52%) and
female (46%) participants—2% of the
participants did not specify their gender.

Among the 48 participants based outside Italy,
most of them reported having lived in an
English-speaking country either between five and
ten years (N=13), or between ten and 20 years
(N=13), with seven also stating that they had
lived in an English-speaking country for more
than 20 years. Unsurprisingly, when asked to
self-report their level of English proficiency in
terms of conversation, reading, writing, and
listening, most participants within this cohort
reported five out of five. Furthermore, the vast
majority of them stated that they spoke, wrote,
read, and listened in English either always or
most of the time.

In contrast, most participants based in Italy re-
ported having a lower level of English proficien-
cy—most of them selected one (out of five) to
rate their English conversation skills, and three
(out of five) to rate their listening, writing, and
reading skills. In line with these scores, most of
the participants based in Italy stated that they
spoke, listened, and wrote in English only rarely.
However, most of them reported reading in Eng-
lish sometimes. In other words, our two cohorts
of participants—namely, Italians living in Eng-
lish-speaking countries and Italians living in Ita-
ly—were different enough in terms of English
proficiency, which allowed us to gather data
from a broad range of potential users of crisis
communications (Section 4.2).

42% of the 48 participants living in an Eng-
lish-speaking country stated that flooding—
namely, the weather-related crisis that is the fo-
cus of our study—was common where they
lived, with 14% not knowing, as shown in Figure
1.

IS FLOODING COMMON IN THE COUNTRY
WHERE YOU LIVE?

I don't know
14%

% Yes
7 2%

No
44%

Figure 1. Percentage of participants (not) familiar
with flooding
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With regard to the use of MT systems, of all
the 61 participants, 48 reported using MT
systems. The reasons for their use of MT are
reported in Figure 2, where the number of
selections is higher than the number of
participants because participants could select
more than one option. Assimilation was the most
common reason, followed by dissemination. This
result was relevant as it showed that these end
users could potentially use MT to translate crisis
messages delivered in a language with which
they were not familiar.

WHY DO YOU USE MACHINE TRANSLATION SYSTEMS?

0

Tounderstand To communicate
information  in languages that |
written in don't know
languages that |
don't know

To learn new
languages

Unspecified

Figure 2. Participants’ reasons for use of MT

4.2 Comprehensibility and Trust

The tables below contain descriptive statistics—
mean and standard deviation (SD). Table 1 re-
ports the comprehensibility scores. Table 2 con-
tains the trust scores, and Table 3 shows the trust
as compliance scores. In each table, we first re-
ported the scores provided by all 61 survey par-
ticipants combined, and then by Italians living in
English-speaking countries and by Italians living
in Italy separately, as these two groups differed
substantially in terms of English proficiency
(Section 4.1). We combined scores assigned by
participants to both sets of messages (Section
3.4). In the interests of clarity, in the tables and
elsewhere in this paper we used raw messages
for those MT outputs that had also been post-
edited even though participants thought that they
had not been—our deception condition (Section
3.3). The highest scores are highlighted in bold.

With regard to comprehensibility (Table 1), it
can be observed that: (i) the messages labelled as
post-edited received the highest average scores
by all three cohorts of participants; (ii) partici-
pants living in Italy—and having a lower level of
English proficiency—seemed to benefit more
from the translations labelled as raw, compared
with the English messages, than participants liv-
ing in English-speaking countries. As far as trust



is concerned (Table 2), results were more varied:
(i) the messages labelled as post-edited were not
associated with highest average scores; but again
(it) differently from participants in English-
speaking countries, participants living in ltaly
showed higher trust in the messages labelled as
raw, compared with the English messages. With
regard to trust measured in terms of compliance
(Table 3), we observed that, regardless of their
level of English proficiency, participants showed
higher compliance with the message in English,
compared with the Italian translations. It should
be noted, however, that the differences in scores
reported in Tables 1-3 are slight, and a series of
repeated measures ANOVAs run in SPSS found
these differences to be not significant (p>.05).

Comprehensibility

English Raw Post-edited

messages messages messages
Total par-
ticipants 3.45(.83) 3.54 (.75) 3.64 (.64)
(N=61)
Italians
abroad 3.66 (.62) 3.64 (.63) 3.74 (.51)
(N=48)
Italians in
Italy 2.71(1.04) 3.18 (1.01) 3.29(.92)
(N=13)

Table 1. Comprehensibility scores
Trust

English Raw Post-edited

messages messages messages
Total par-
ticipants 3.36 (.80) 3.29(.82) 3.35(.90)
(N=61)
Italians
abroad 3.49 (.74) 3.34(.77) 3.46 (.78)
(N=48)
Italians in
Italy 2.88(.85) 3.12(.99) 2.94 (1.19)
(N=13)

Table 2. Trust scores
Trust (compliance)

English Raw Post-edited

messages Messages messages
Total par-
ticipants 3.53(.75) 3.35(.90) 3.38(.95)
(N=61)
Italians
abroad 3.67 (.59) 3.46 (.80) 3.56 (.78)
(N=48)
Italians in
Italy 3.00 (1.0) 2.94 (1.14) 2.76 (1.25)
(N=13)

Table 3. Compliance (trust) scores

Using SPSS software, we also examined
potential correlations between comprehensibility
scores and trust scores. The results, reported in
Table 4, showed that comprehensibility scores
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and trust scores had a statistically significant
linear relationship for all three types of messages
(p<.01). The direction of the relationship was
positive, and the strength of this association went
from moderate to fairly strong (.5 < rs <.7). In
other words, regardless of how the messages
were labelled (i.e. raw MT vs. PE) and regardless
of translation, greater comprehensibility was
often associated with greater trust.

Trust Trust
(compliance)
English messages | English messages
.69* .66*
Raw messages Raw messages
Comprehensibility .53* 66*
Post-edited mes- | Post-edited mes-
sages sages
.55* 62*

Table 4. Results of the Spearman Correlation?

The qualitative data collected through the
open-ended questions in the survey (Section 3.3),
and coded with the NVivo software, comple-
mented these scores and guided their interpreta-
tion. We used thematic analysis (Braun and
Clarke, 2012) to identify the main reasons behind
the comprehensibility and trust scores that the
participants assigned. Our analysis identified
seven themes in the participants’ responses,
namely: clarity; soundness; helpfulness; fluency;
style; source; and individual differences.

Figure 3 shows how many times each reason
was mentioned per message and per each object
of investigation among native Italian speakers
living in English-speaking countries. Figure 4
reports the same data for the cohort living in Ita-
ly. Again, we counted and analysed the answers
given by the participants when evaluating both
sets of crisis messages (Section 3.3). Participants
could indicate more than one reason for each of
their scores.

In line with the moderate to fairly strong cor-
relations in Table 4, Figures 3 and 4 show that
clarity (defined as simplicity and comprehensi-
bility of language) was regarded by numerous
participants as a reason to trust the messages. For
participants living in Italy and having lower Eng-
lish proficiency, clarity was needed to trust the
messages particularly when the messages were in
English, which might explain the slightly lower
average score that they assigned to the trustwor-
thiness of English messages (Table 2).

2 Statistical significance (*) is at the .01 level.
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Figure 3. Mentions of themes by participants in English-speaking countries, cross-referenced with
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Figure 4. Mentions of themes by participants in Italy, cross-referenced with experimental conditions

As would be expected, clarity also emerged as
a common reason influencing comprehensibility
scores. A few participants mentioned the features
that rendered a message clear, such as the ab-
sence of technical terms, simple noun and verb
phrases, or the use of common words. It should
be remembered that our experimental materials
could be understood by readers between 11 and
16 years of age (Section 3.4).

When evaluating their level of compliance,
clarity seemed to be less relevant to participants.
In contrast, the soundness, the helpfulness, and
the source of the messages seemed to be deter-
mining factors. Often, the soundness and help-
fulness of the messages also determined the par-
ticipants’ level of trust in the messages. See, for
examples, extracts below?® in which participants
explain why they would trust and comply with a
specific crisis message:

P10: Logical and reasonable explanation.

P20: It’s reasonable, and the task can be carried out
easily, and it’s for my benefit.

3 The answers in Italian were translated into English by the
first author.
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P09: In general, if it [the message] comes from emer-
gency managers, it means that the information provided
is accurate.

Another aspect occasionally influencing trust
seemed to be style—this theme included the tone
and register of the message. Specifically, several
participants mentioned the authoritative tone, the
directness of the message, and the sense of com-
petence emerging from the messages—especially
those in English—as reasons to trust them.

Individual differences, and especially previous
experience of a weather-related crisis, also
emerged as a reason for compliance among lItal-
ians living in English-speaking countries. This is
not surprising considering that almost half of
them reported living in a country where flooding
is common (Figure 1).

Considering the specific focus of this paper on
the impact of MT and PE (Section 3.1), as well
as on how messages were labelled, it is interest-
ing to notice that the theme of fluency—
capturing participants® mentions of how
(un)natural the language of the translated mes-
sages was—emerged as one of the reasons be-
hind participants’ trust and comprehensibility



scores. See, for instance, the following explana-
tions for assigning a specific score:

P14: The translation is correct, but it could be improved.

P22: Even though the message is clear, it’s obvious that
it’s a raw translation.

P26: Message clear and simple, with no errors.

PO05: Because it contains no errors, and you can’t tell
that it’s an automatic translation.

P07: The message has been translated clearly and cor-
rectly, with no obvious grammar or syntactical errors.

P27: Convoluted, not fluid.

Despite these mentions of translation, Figure 3
and Figure 4 show that the other themes—and
especially clarity, soundness, helpfulness, and
source—had a stronger impact on participants’
reported comprehensibility and trust. Interesting-
ly, this observation on the somewhat lower im-
pact of translation, and of how translation was
labelled, is in line with the slight differences re-
ported in Tables 1-3 between the scores assigned
to English messages, to messages labelled as raw
MT, and to those labelled as post-edited. Fur-
thermore, participants’ responses to the open-
ended questions seemed to cluster around the
same themes depending on whether the question
was on trust, compliance, or comprehensibility,
and regardless of whether they were reading the
English message, the purported raw translation,
or the post-edited translation. For instance, the
importance of the source (i.e. emergency manag-
ers) was mentioned by several participants when
indicating the reasons behind compliance, but
was absent when they discussed their compre-
hensibility scores (Figures 3-4).

5 Discussion and Conclusions

With this survey, we set out to investigate the
impact of MT and PE awareness, in the English
to ltalian direction, on comprehension of and
trust in messages disseminated to the public in
the context of preparation for a specific weather-
related crisis, i.e. flooding (Section 3.1).

Overall, we found slight and non-significant
differences in terms of scores between English,
purported raw, and post-edited messages. How-
ever, some interesting trends emerged, namely:
(i) some beneficial effect of MT on comprehen-
sion and trust among end users with low English
proficiency; (ii) a tendency to comply more with
messages in English, possibly as a result of their
authoritative tone/style (Section 4.2); and (iii)
labelling of messages as post-edited resulting in
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some improvement in comprehension, but not in
trust. The absence of a beneficial effect of PE
awareness on trust might be due to: (i) the pur-
ported MT outputs having also been post-edited
and, therefore, appearing equally trustworthy; (ii)
the fact that the fluency of the declared post-edits
could have been improved further (Section 4.2).
In line with these points, the fluency of the trans-
lations had some impact on how comprehensible
and trustworthy the messages appeared to be to
our participants. Interestingly, after comparing
the influence of different PE levels among end
users, Van Egdom and Pluymaekers (2019)
found that full PE led to positive judgements in
terms of language use and style, but did not re-
sult in a significant improvement of the percep-
tions (including trustworthiness) of the sender of
a product.

Regardless of how the messages were labelled,
several aspects of crisis messages were recog-
nized as particularly important by participants,
especially the clarity, the soundness, the helpful-
ness, and the source of the messages. The im-
portance of clarity for comprehension could be
expected. On the other hand, results regarding
trust are particularly interesting as they align
with models of trust (Mayer et al., 1995) accord-
ing to which the decision to trust is determined
by, among others: the competence of the trustee
(e.g. their ability to provide accurate and sensible
information), corresponding to soundness in our
study; their intentions (e.g. to help the public af-
fected by a crisis), corresponding to our helpful-
ness theme; and their adherence to a set of ac-
cepted principles, e.g. as imposed by the profes-
sion on emergency managers, who were the
source of our messages. Furthermore, trust mod-
els discuss the trustor’s propensity to trust (May-
er et al., 1995), which, in our study, seemed to be
mainly determined by previous experience of
flooding.

A final interesting finding from this study was
the demonstration that greater comprehension is
associated with greater trust. This finding pro-
vides empirical evidence of the role that clear
crisis communications—through plain language
and/or translation—can play in establishing a
relationship of trust between emergency manag-
ers and the public, thus leading to higher compli-
ance with instructions for crisis preparedness. A
similar result, although related to advertisement
disclaimers, is reported in Herbst et al. (2013).



This study has several limitations, particularly
the high level of English proficiency of most par-
ticipants, and the limited number of messages
that were evaluated. Larger-scale experimental
studies with different setups are warranted. Addi-
tional research should focus on: the impact of
different PE levels; the impact of labelling hu-
man translations as post-edits; different language
pairs; and end users less familiar with MT (Fig-
ure 2). It might also be interesting to observe end
users’ interactions with MT and to explain them
using a trust and credibility lens (see e.g. Gao et
al. 2014). Finally, future qualitative research
could help determine the directionality of the
relationship between comprehension and trust.
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Abstract

Recent progress in neural machine transla-
tion is directed towards larger neural net-
works trained on an increasing amount of
hardware resources. As a result, NMT mod-
els are costly to train, both financially, due
to the electricity and hardware cost, and en-
vironmentally, due to the carbon footprint.
It is especially true in transfer learning for
its additional cost of training the “parent”
model before transferring knowledge and
training the desired “child” model. In this
paper, we propose a simple method of re-
using an already trained model for different
language pairs where there is no need for
modifications in model architecture. Our
approach does not need a separate parent
model for each investigated language pair,
as it is typical in NMT transfer learning. To
show the applicability of our method, we
recycle a Transformer model trained by dif-
ferent researchers and use it to seed models
for different language pairs. We achieve
better translation quality and shorter con-
vergence times than when training from ran-
dom initialization.

1 Introduction

Neural machine translation (NMT), the current
prevalent approach to automatic translation, is
known to require large amounts of parallel training
sentences and an extensive amount of training time
on dedicated hardware. The total training time sig-
nificantly increases, especially when training strong

(© 2020 The authors. This article is licensed under a Creative
Commons 3.0 licence, no derivative works, attribution, CC-
BY-ND.

baselines, searching for best hyperparameters or
training multiple models for various language pairs.

Schwartz et al. (2019) analyzed 60 papers from
top Al conferences and found out that 80% of them
target accuracy over efficiency, and only a small
portion of papers argue for a new efficiency result.
They also noted that the increasing financial cost
of the computations could make it difficult for re-
searchers to engage in deep learning research or
limit training strong baselines. Furthermore, in-
creased computational requirements have also an
environmental cost. Strubell et al. (2019) estimated
that training a single Transformer “big” model pro-
duces 87 kg of CO, and that the massive Trans-
former architecture parameter search produced 298
tonnes of CO,.!

However, a lot of research has been already in-
vested into cutting down the long training time by
the design of NMT model architectures, promot-
ing self-attentive (Vaswani et al., 2017) or convo-
lutional (Gehring et al., 2017) over recurrent ones
(Bahdanau et al., 2014) or the implementation of
heavily optimized toolkits (Junczys-Dowmunt et
al., 2018).

In this paper, we propose a novel view on re-
using already trained “parent” models without the
need to prepare a parent model in advance or mod-
ify its training hyper-parameters. Furthermore, we
propose a second method based on a vocabulary
transformation technique that makes even larger
improvements, especially for languages using an
alphabet different from the re-used parent model.
Our transfer learning approach leads to better per-
formance as well as faster convergence speed of
the “child” model compared to training the model
from scratch. We document that our methods are

!"The paper reports numbers based on the U.S. energy mix.
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not restricted only to low-resource languages, but
they can be used even for high-resource ones.

Previous transfer learning techniques (Neubig
and Hu, 2018; Kocmi and Bojar, 2018) rely on
a shared vocabulary between the parent and child
models. As a result, these techniques separately
train parent model for each different child language
pair. In contrast, our approach can re-use one parent
model for multiple various language pairs, thus
further lowering the total training time needed.

In order to document that our approach is not
restricted to parent models trained by us, we re-use
parent model trained by different researchers: we
use the winning model of WMT 2019 for Czech-
English language pair (Popel et al., 2019).

The paper is organized as follows: Section 2
describes the method of Direct Transfer learning,
including our improvement of vocabulary transfor-
mation. Section 3 presents the model, training data,
and our experimental setup. Section 4 describes the
results of our methods followed by the analysis in
Section 5. Related work is summarized in Section 6
and we conclude the discussion in Section 7.

2 Transfer Learning

In this work, we present the use of transfer learning
to reduce the training time and improve the per-
formance in comparison to training from random
initialization even for high-resource language pairs.

Transfer learning is an approach of using training
data from a related task to improve the accuracy of
the main task in question (Tan et al., 2018). One of
the first transfer learning techniques in NMT was
proposed by Zoph et al. (2016). They used word-
level NMT and froze several model parts, especially
embeddings of words that are shared between par-
ent and child model.

We build upon the work of Kocmi and Bojar
(2018), who simplified the transfer learning tech-
nique thanks to the use of subword units (Wu et
al., 2016) in contrast to word-level NMT transfer
learning (Zoph et al., 2016) and extended the appli-
cability to unrelated languages.

Their only requirement, and also the main disad-
vantage of the method, is that the vocabulary has
to be shared and constructed for the given parent
and child languages jointly, which makes the parent
model usable only for the particular child language
pair. This substantially increases the overall train-
ing time needed to obtain the desired NMT system
for the child language pair.
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The method of Kocmi and Bojar (2018) con-
sists of three steps: (1) construct the vocabulary
from both the parent and child corpora, (2) train
the parent model with the shared vocabulary until
convergence, and (3) continue training on the child
training data.

Neubig and Hu (2018) call such approaches
warm-start, where we use the child language pair
to influence the parent model. In our work, we
focus on the so-called cold-start scenario, where
the parent model is trained without a need to know
the language pair in advance. Therefore we cannot
make any modifications of the parent training to
better handle the child language pair. The cold-start
transfer learning is expected to have slightly worse
performance than the warm-start approach. How-
ever, it allows reusing one parent model for multiple
child language pairs, which reduces the total train-
ing time in comparison to the use of warm-start
transfer learning.

We present two approaches: Direct Transfer that
ignores child-specific vocabulary altogether; and
Transformed Vocabulary, which modifies vocabu-
lary of the already trained parent. Thus, one parent
model can be used for multiple child language pairs.

2.1 Direct Transfer

Direct Transfer can be seen as a simplification of
Kocmi and Bojar (2018). We ignore the specifics
of the child vocabulary and train the child model
using the parent vocabulary. We suppose that the
subword vocabulary can handle the child language
pair, although it is not optimized for it.

We take an already trained model and use it as
initialization for a child model using a different
language pair. We continue the training process
without any change to the vocabulary or hyper-
parameters. This applies even to the training param-
eters, such as the learning rate or moments.

This method of continued training on different
data while preserving hyper-parameters is used un-
der the name “continued training” or “fine-tuning”
(Hinton and Salakhutdinov, 2006; Miceli Barone et
al., 2017), but it is mostly used as a domain adapta-
tion within a given language pair.

Direct Transfer relies on the fact that the current
NMT uses subword units instead of words. The sub-
words are designed to handle unseen words or even
characters, breaking the input into shorter units, pos-
sibly down to individual bytes as implemented, for
example, by Tensor2Tensor (Vaswani et al., 2018).



Child-specific | EN-CS vocab.
Avg. #per: Sent. Word | Sent. Word
Odia 95.8 3.7 | 496.8 19.1
Estonian 26.0 1.1 56.2 23
Finnish 22.9 1.1 55.9 2.6
German 274 1.3 55.4 2.5
Russian 333 1.3 1349 53
French 42.0 1.6 65.7 2.5

Table 1: Average number of tokens per sentence (column
“Sent.”) and average number of tokens per word (column
“Word”) when the training corpus is segmented by child-
specific or parent-specific vocabulary. “Child-specific” repre-
sents the effect of using vocabulary customized for examined
language. “EN-CS” corresponds to the use of English-Czech
vocabulary.

‘ Segmented sentence

Original | Creppa-Jleone
EN-RU | Coeppa Ik Dleone
EN-CS | Cleleplpal I B\liol51klelolze

Figure 1: Illustration of segmentation of Russian phrase
(gloss: Sierra Leone) with English-Czech and English-Russian
vocabulary from our experiments. The character | represents
splits.

This property ensures that the parent vocabulary
can, in principle, serve for any child language pair,
but it can be highly suboptimal, segmenting child
words into too many subwords.

We present an example of a Russian phrase
and its segmentation based on English-Czech or
English-Russian vocabulary in Figure 1. When
using child-specific vocabulary, the segmentation
works as expected, splitting the phrase into three
tokens. However, when we use a vocabulary that
contains only the Cyrillic alphabet? and not many
longer sequences of characters, the sentence is
split into 13 tokens. We can notice that English-
Czech wordpiece vocabulary is missing a character
“JI”, thus it breaks it into the byte representation
“\N1051;".

We examine the influence of parent-specific vo-
cabulary on the training dataset of the child. Table 1
documents the segmenting effect of different vocab-
ularies. If we compare the child-specific and parent-
specific (“EN-CS”) vocabulary, the average number
of tokens per sentence or per word increases more
than twice. For example, German has twice as many
tokens per word compared to its child-specific vo-
cabulary, and Russian has four times more tokens

2This happened solely due to noise in the Czech-English parent
training data.
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Input: Parent vocabulary (an ordered list of
parent subwords) and the training cor-
pus for the child language pair.

Generate child-specific vocabulary with the

maximum number of subwords equal to the
parent vocabulary size;

for subword S in parent vocabulary do

if S in child vocabulary then

continue;

else
Replace position of S in the parent vo-

cabulary with the first unused child
subword not contained in the parent;
end

end
Result: Transformed parent vocabulary

Algorithm 1: Transforming parent vocabulary to
contain child subwords and match positions for
subwords common for both of language pairs.

due to Cyrillic. Odia is affected even more.

Thus, we see that ignoring the vocabulary mis-
match introduces a problem for NMT models in the
form of an increasing split ratio of tokens. As ex-
pected, this is most noticeable for languages using
different scripts.

2.2 Vocabulary Transformation

Using parent vocabulary roughly doubles the num-
ber of subword tokens per word, as we showed in
the previous section. This problem would not hap-
pen with child-specific vocabulary. However, we
are using an already trained parent with its vocab-
ulary. Therefore, we propose a vocabulary trans-
formation method that replaces subwords in the
parent wordpiece (Wu et al., 2016) vocabulary with
subwords from the child-specific vocabulary.
NMT models associate each vocabulary item
with its vector representation (embedding). When
transferring the model from the parent to the child,
we decide which subwords should preserve their
embedding as trained in the parent model and which
embeddings should be remapped to new subwords
from the child vocabulary. The goal is to preserve
embeddings of subwords that are contained in both
parent and child vocabulary. In other words, we
reuse embeddings of subwords common to both
parent and child vocabularies and reuse the vocabu-
lary entries of subwords not occurring in the child



data for other, unrelated, subwords that the child
data need. Obviously, the embeddings for these
subwords will need to be retrained.

Our Transformed Vocabulary method starts by
constructing the child-specific vocabulary with the
size equal to the parent vocabulary size (the parent
model is trained, thus it has a fixed number of em-
beddings). Then, as presented in Algorithm 1, we
generate an ordered list of child subwords, where
subwords known to the parent vocabulary are on
the same positions as in the parent vocabulary, and
other subwords are assigned arbitrarily to places
where parent-only subwords were stored.

We experimented with several possible mappings
between the parent and child vocabulary. We tried
to assign subwords based on frequency, by random
assignment, or based on Levenshtein distance of
parent and child subwords. However, all the ap-
proaches reached comparable performance; neither
of them significantly outperformed the others. One
exception is when assigning all subwords randomly,
even those that are shared between parent and child.
This method leads to worse performance, having
several BLEU points lower than other approaches.
Another approach would be to use pretrained sub-
word embeddings similarly as proposed Kim et al.
(2019). However, in this paper, we focus on show-
ing, that transfer learning can be as simple as not
using any modifications at all.

3 Experiments

In this section, we first provide the details of the
NMT model used in our experiments and the ex-
amined set of language pairs. We then discuss the
convergence and a stopping criterion and finally
present the results of our method for recycling the
NMT model as well as improvements thanks to the
vocabulary transformation.

3.1 Parent Model and its Training Data

In order to document that our method functions
in general and is not restricted to our laboratory
setting, we do not train the parent model ourselves.
Instead, we recycle two systems trained by Popel et
al. (2019), namely the English-to-Czech and Czech-
to-English winning models of WMT 2019 News
Translation Task. It is important to note, that we use
two parent models and for experiments we always
use the parent model with English on the same side,
e.g. English-to-Russian child has English-to-Czech
as a parent. We leave experimenting with different
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parents or various combinations for future works,
because the goal of this work is to make approach
most simple.

We decided to use this model for several rea-
sons. It is trained to translate into Czech, a high-
resource language that is dissimilar from any of the
languages used in this work.?> At the same time,
it is trained using the state-of-the-art Transformer
architecture as implemented in the Tensor2Tensor
framework.* (Vaswani et al., 2018). We use Ten-
sor2Tensor in version 1.8.0.

The model is described in Popel (2018). It is
based on the “Big GPU Transformer” setup as de-
fined by Vaswani et al. (2017) with a few modifica-
tions. The model uses reverse square root learning
rate decay with 8000 warm-up steps and a learning
rate of 1. It uses the Adafactor optimizer, the batch
size of 2900 subword units, disabled layer dropout.

Due to the memory constraints, we drop training
sentences longer than 100 subwords. We use child
hyper-parameter setting equal to the parent model.
However, some hyper-parameters like learning rate,
dropouts, optimizer, and others could be modified
for the training of the child model. We leave these
experiments for future work.

We train models on single GPU GeForce 1080Ti
with 11GB memory. In this setup, 10000 training
steps take on average approximately one and a half
hours. Popel et al. (2019) trained the model on
8 GPUs for 928k steps, which means that on the
single GPU, the parent model would need at least
7424k steps, i.e. more than 45 days of training.

In our experiments, we train all child models up
to 1M steps and then take the model with the best
performance on the development set. Because some
of the language pairs, especially the low-resource
ones, converge within first 100k steps, we use a
weak early stopping criterion that stops the training
whenever there was no improvement larger than
0.5% of maximal reached BLEU over the past 50%
of training evaluations (minimum of training steps
is 100k). This stopping criterion makes sure that no
model is stopped prematurely.

3The linguistically most similar language of our language se-
lection is Russian, but we do not transliterate Cyrillic into
Latin script. Therefore, the system cannot associate similar
Russian and Czech words based on appearance.
‘nttps://github.com/tensorflow/
tensor2tensor



Language pair Pairs Training set Development set Test set
EN - Odia 27k Parida et al. (2018)  Parida et al. (2018)  Parida et al. (2018)
EN - Estonian 0.8M Europarl, Rapid WMT dev 2018 WMT 2018
EN - Finnish 2.8M Europarl, Paracrawl, Rapid WMT 2015 WMT 2018
EN - German 3.5M Europarl, News commentary, Rapid WMT 2017 WMT 2018
EN - Russian 12.6M | News Commentary, Yandex, and UN Corpus WMT 2012 WMT 2018
EN - French | 34.3M Commoncrawl, Europarl, Giga FREN, WMT 2013 WMT dis. 2015
News commentary, UN corpus

Table 2: Corpora used for each language pair. The names specify the corpora from WMT 2018 News Translation Task data.
Column “Pairs” specify the total number of sentence pairs in training data.

Language pair Baseline Direct Transfer Transformed Vocab
BLEU Steps | BLEU Steps | BLEU Steps A BLEU Speed-up
English-to-Odia 3.54 45k 0.26 47k 6.38 i* 38k 2.84 16 %
English-to-Estonian | 16.03 95k | 20.75% 75k | 2027% 75k 4.24 21 %
English-to-Finnish | 14.42 420k | 16.121 255k | 16.73 i* 270k 2.31 36 %
English-to-German | 36.72 270k | 38.58 1 190k | 39.28 1* 110k 2.56 59 %
English-to-Russian | 27.81 1090k | 27.04 630k | 28.65 i* 450k 0.84 59 %
English-to-French 3372 820k | 34411 660k | 34461 720k 0.74 12 %
Estonian-to-English | 21.07 70k | 24361 30k | 24.641* 60k 3.57 14 %
Russian-to-English | 30.31 980k | 23.41 420k | 31.38 i* 700k 1.07 29 %

Table 3: Translation quality and training time. “Baseline” is trained from scratch with its own vocabulary and child corpus only.
“Direct Transfer” is initialized with parent model using the parent vocabulary and continues training. ‘“Transformed Vocab” has
the same initialization but merges the parent and child vocabulary as described in Section 2.2. Best score and lowest training
time in each row in bold. The statistical significance is computed against the baseline (I) or against “Direct Transfer” (*). Last
two columns show improvements of Transformed Vocabulary in comparison to the baseline.

3.2 Studied Language Pairs

We use several child language pairs to show that
our approach is useful for various sizes of corpora,
language pairs, and scripts. To cover this range of
situations, we select languages in Table 2. Future
works could focus also on languages outside from
Indo-European family, such as Chinese.

Another decision behind selecting these language
pairs is to include language pairs reaching vari-
ous levels of translation quality. This is indicated
by automatic scores of the baseline setups ranging
from 3.54 BLEU (English-to-Odia) to 36 BLEU
(English-to-German)?, see Table 3.

The sizes of corpora are in Table 2. The small-
est language pair is English-Odia, which uses the
Brahmic writing script and contains only 27 thou-
sand training pairs. The largest is the high-resource
English-French language pair.

For most of the language pairs, we use training
data from WMT (Bojar et al., 2018).° We use the
training data without any preprocessing, not even

5The systems submitted to WMT 2018 for English-to-German
translation have better performance than our baseline due to
the fact, that we decided not to use Commoncrawl, which
artificially made English-German parallel data less resourceful.
*http://www.statmt.org/wmt18/
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tokenization.” See Table 2 for the list of used cor-
pora for each language pair. For some languages,
we have opted out from using all available corpora
in order to experiment on languages containing var-
ious magnitudes of parallel sentences.

For high-resource English-French language pair,
we perform a corpora cleaning using language de-
tection Langid.py (Lui and Baldwin, 2012). We
drop all sentences that are not recognized as the cor-
rect language. It removes 6.5M (15.9 %) sentence
pairs from the English-French training corpora.

4 Results

All reported results are calculated on the test data
and evaluated with SacreBLEU (Post, 2018). The
results are in Table 3. We discuss separately the
training time, automatically assessed translation
quality using the parent and the Transformed Vocab-
ulary, and comparison to Kocmi and Bojar (2018)
in the following sections.

Baselines use the same architecture, and they
are trained solely on the child training data with
the use of child-specific vocabulary. We compute

"While the recommended best practice in past WMT evalua-
tions was to use Moses tokenizer. It is not recommended for
Tensor2Tensor with its build-in tokenizer any more.



statistical significance with a paired bootstrap re-
sampling (Koehn, 2004). We use 1000 samples and
a confidence level of 0.05. Statistically significant
improvements are marked by 1.

4.1 Direct Transfer Learning

First, we compare the Direct Transfer learning in
contrast to the baseline. We see that Direct Transfer
learning is significantly better than the baseline in
both translation directions in all cases except for
Odia and Russian, which we will discuss later. We
get improvements for various language types, as
discussed in Section 3.2. The largest improvement
is of 4.72 BLEU for the low-resource language
pair of Estonian-English, but we also get an im-
provement of 0.69 BLEU for the high-resource pair
French-English.

The results are even more surprising when we
take into account the fact that the model uses the
parent vocabulary, and it is thus segmenting words
into considerably more subwords. This suggests
that the Transformer architecture generalizes very
well to short subwords. However, the worse per-
formance of English-Odia and English-Russian can
be attributed to the different writing script. The
Odia script is not contained in the parent vocabu-
lary at all, leading to segmenting of each word into
individual bytes, the only common units with the
parent vocabulary. Therefore, to avoid problems
with filtering, we increase the filtering limit of long
sentences during training from 100 to 500 subwords
for these two language pairs (see Section 3.1).

4.2 Results with Transformed Vocabulary

As the results in Table 3 confirm, Transformed Vo-
cabulary successfully tackles the problem of the
child language using a different writing script. We
see “Transformed Vocab” delivering the best per-
formance for all language pairs except for English-
to-Estonian, significantly improving over baseline
and even over “Direct Transfer” in most cases.

4.3 Training Time

In the introduction, we discussed that recent devel-
opment in NMT focuses mainly on the performance
over efficiency (Schwartz et al., 2019). Therefore,
in this section, we discuss the amount of training
time required for our method to converge. We are
reporting the number of updates (i.e. steps) needed
to get the model used for evaluation.?

8 Another possibility would be to report wall-clock time. How-
ever, that is influenced by server load and other factors. The
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Language Transf. Warm
pair Baseline vocab Start
To Estonian 16.03 20.27  20.75
a To Russian 27.81 28.65 29.03 1
=  From Estonian 21.07 24.64 26.00 %
From Russian 30.31 31.38 31.15
To Estonian 95k 75k 735k
% To Russian 1090k 450k 1510k
o From Estonian 70k 60k 700k
From Russian 980k 700k 1465k

Table 4: Comparison of our Transformed Vocabulary method
with Kocmi and Bojar (2018) (abridged as “Warm Start”). The
top half of table compares results in BLEU, the bottom half
the number of steps needed to convergence. Steps of Kocmi
and Bojar (2018) method are reported as the sum of parent and
child training, due to the nature of the method.

We see in Table 3 that both our methods con-
verged in a lower number of steps than the baseline.
For the Transformed Vocabulary method, we get a
speed-up of 12-59 %. The reduction in the number
of steps is most visible in English-to-German and
English-to-Russian. It is important to note that the
number of steps to the convergence is not precisely
comparable, and some tolerance must be taken into
account. It is due to the fluctuation in the training
process. However, in neither of our experiments,
Transformed Vocabulary is slower than baseline.
Thus we conclude that our Transformed Vocabulary
method takes fewer training steps to finish training
than training a model from scratch.

4.4 Comparison to Kocmi and Bojar (2018)

We replicated the experiments of Kocmi and Bojar
(2018) with the identical framework and hyperpa-
rameter setting in order to compare their method
to ours. We experiment with Estonian-English and
Russian-English language pair in both translation
directions. Their approach needs an individual par-
ent for every child model, so we train four models:
two English-to-Czech and two Czech-to-English on
the same parent training data as Kocmi and Bojar
(2018). All vocabularies contain 32k subwords. We
compare their method with our Transformed Vocab-
ulary. Furthermore, the results of Direct Transfer in
Table 3 are also comparable with this experiment.
In Table 4, we see that their method reaches
a slightly better performance in three translation
models, where English-to-Russian and Estonian-
to-English are significantly (1) better than Trans-
formed Vocabulary technique; the other two are
on par with our method, which is understandable.
The Transformed Vocabulary cannot outperform

number of steps is better for the comparison as long as the
batch size stays the same across experiments.
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Figure 2: Child BLEU scores when trained with some parameters frozen. The left plot shows English-to-Estonian and the right
is Estonian-to-English. In both plots, the first two groups are experiments where one component is frozen and the second two are

when all components but one are frozen.

the warm-start technique since the warm-start par-
ent model has the advantage of being trained with
the vocabulary prepared for the investigated child.

However, when we compare the total number of
steps needed to reach the performance, both our
approaches are significantly faster than Kocmi and
Bojar (2018). The most substantial improvements
are roughly ten times faster for Estonian-to-English,
and the smallest difference for English-to-Russian
is two times faster. This is mostly because their
method first needs to train the parent model that is
specialized for the child, while our method can di-
rectly re-use any already trained model. Moreover,
we can see that their method is even slower than the
baseline model.

S Analysis by Freezing Parameters

To discover which transferred parameters are the
most helpful for the child model and which need to
be changed the most, we follow the analysis used
by Thompson et al. (2018): When training the child,
we freeze some of the parameters.

Based on the internal layout of the Transformer
model in Tensor2Tensor, we divide the model into
four components. (i) Word embeddings (shared
between encoder and decoder) map each subword
unit to a dense vector representation. (ii) The en-
coder component includes all the six feed-forward
layers converting the input sequence to the deeper
representation. (iii) The decoder component con-
sists again of six feed-forward layers preparing the
choice of the next output subword unit. (iv) The
multi-head attention is used throughout encoder and
decoder, as self-attention layers interweaved with
the feed-forward layers.

We run two sets of experiments: either freeze
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only one out of the four components and leave the
rest of the model updating or freeze everything but
the examined component. We also test it on two
translation directions: English-to-Estonian in the
left hand part of Figure 2 and Estonian-to-English
in the right hand part. In both cases, English-Czech
(in the corresponding direction, i.e. with English
on the correct side) serves as the parent. We dis-
cuss individual components separately, indexing
the experiments (D to (§).

Similarly to Thompson et al. (2018) in domain
adaptation, we observe that parent embeddings
serve well in Direct Transfer, freezing them has
a minimal impact compared to the baseline in (T)
and (5). The frozen embeddings in Transformed Vo-
cabulary (), ®) results in significant performance
drops which can be attributed to the arbitrary as-
signment of embeddings to new subwords.

The comparison of all but embeddings frozen in
@ and ® (Transformed Vocabulary) is interesting.
In (®), the performance of the network can be recov-
ered close to the baseline by retraining either parent
source embeddings or the encoder. These two com-
ponents can compensate for each other. This differs
from the case with English reused in the source (@)
where updating embeddings to the child language
is insufficient: the decoder must be updated to pro-
duce fluent output in the new target language and
even with the decoder updated, the loss compared
to the baseline is quite substantial.

The most important component for transfer learn-
ing is generally the component handling the new
language: decoder in English-to-Estonian and en-
coder in the reverse. With this component fixed, the
performance drops the most with this component
fixed (D, @, ®), ®) and among the least with this



component free to update (3), @, @), ®). This con-
firms that at least for examined language pair, the
Transformer model lends itself very well to encoder
or decoder re-use.

Other results in Figure 2 reveal that the archi-
tecture can compensate for some of the training
deficiencies. Freezing the encoder (D), ) (resp. de-
coder for Estonian-to-English (5), ®)) or attention
is not that critical as the frozen decoder (resp. en-
coder). The bad result of the encoder 3), @ (resp.
decoder (7), ®) being the only non-frozen compo-
nent shows that model is not capable of providing
all the needed capacity for the new language, unlike
the self-attention where the loss is not that large.
This behaviour correlates with our intuition that
the model needs to update the most the component
that handles the differing language with the parent
model (in our case Czech).

All in all, these experiments illustrate the robust-
ness of the Transformer model that it is able to train
and reasonably well utilize pre-trained weights even
if they are severely crippled.

6 Related Work

This paper focuses on re-using an existing NMT
model in order to improve the performance in terms
of training time and translation quality without any
need to modify the model or pre-trained weights.

Lakew et al. (2018) presented two model modifi-
cations for multilingual MT and showed that trans-
fer learning could be extended to transferring from
the parent to the first child, followed by the sec-
ond child and then the third one. They achieved
improvements with dynamically updating embed-
dings for the vocabulary of a target language.

The use of other language pairs for improving
results for the target language pair has been ap-
proached from various angles. One option is to
build multilingual models (Liu et al., 2020), ideally
so that they are capable of zero-shot, i.e. translat-
ing in a translation direction that was never part
of the training data. Johnson et al. (2017) and Lu
et al. (2018) achieve this with a unique language
tag that specifies the desired target language. The
training data includes sentence pairs from multi-
ple language pairs, and the model implicitly learns
translation among many languages. In some cases,
it achieves zero-shot and can translate between lan-
guages never seen together. Gu et al. (2018) tackled
the problem by creating universal embedding space
across multiple languages and training many-to-one
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MT system. Firat et al. (2016) propose multi-way
multi-lingual systems. Their goal is to reduce the
total number of parameters needed to train multiple
source and target models. In all cases, the methods
are dependent on a special training schedule.

The lack of parallel data in low-resource lan-
guage pairs can also be tackled by unsupervised
translation (Artetxe et al., 2018; Lample et al.,
2018). The general idea is to train monolingual
autoencoders for both source and target languages
separately, followed by mapping both embeddings
to the same space and training simultaneously two
models, each translating in a different direction. In
an iterative training, this pair of NMT systems is
further refined, each system providing training data
for the other one by back-translating monolingual
data (Sennrich et al., 2016).

For very closely related language pairs, translit-
eration can be used to generate training data from
a high-resourced pair to support the low-resourced
one as described in Karakanta et al. (2018).

7 Conclusion

In this paper, we focus on a setting where exist-
ing models are re-used without any preparation for
knowledge transfer of original model ahead of its
training. This is a relevant and prevailing situation
in academia due to computing restrictions, and in-
dustry, where updating existing models and scaling
to more language pairs is essential. We evaluate
and propose methods of re-using Transformer NMT
models for any “child” language pair regardless of
the original “parent” training languages and espe-
cially showing, that no modification is better than
training from scratch.

The techniques are simple, effective, and appli-
cable to models trained by others which makes it
more likely that our experimental results will be
replicated in practice. We showed that despite the
random assignment of subwords, the Transformed
Vocabulary improves the performance and shortens
the training time of the child model compared to
training from random initialization.

Furthermore, we showed that this approach is
not restricted to low-resource languages, and we
documented that the highest improvements are (ex-
pectably) due to the shared English knowledge.
Moreover, we confirmed the robustness of the
Transformer and its ability to achieve good results
in adverse conditions like very fragmented subword
units or parts of the network frozen.



The warm-start approach by Kocmi and Bojar
(2018) performs slightly better than our Trans-
formed Vocabulary, but it needs to be trained for a
significantly longer time. This leaves room for ap-
proaches that also focus on the efficiency of the
training process. We perceive our approach as
a technique for increasing the performance of a
model without an increase in training time. Thus,
re-using older models in cold-start scenario of trans-
fer learning can be used in standard NMT training
pipelines without any performance or speed losses
instead of random initialization as is the common
practice currently.
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Abstract

The Predictor-Estimator framework for
quality estimation (QE) is commonly used
for its strong performance, where the pre-
dictor and estimator works on feature ex-
traction and quality evaluation, respec-
tively. However, training the predictor
from scratch is computationally expensive.
In this paper, we propose an efficient trans-
fer learning framework to transfer knowl-
edge from NMT dataset into QE mod-
els. A Predictor-Estimator alike model
named BAL-QE is also proposed, aiming
to extract high quality features with pre-
trained NMT model, and make classifica-
tion with a fine-tuned Bottleneck Adapter
Layer (BAL). The experiment shows that
BAL-QE achieves 97% of the SOTA per-
formance in WMT19 En-De and En-Ru
QE tasks by only training 3% of parame-
ters within 4 hours on 4 Titan XP GPUs.
Compared with the commonly used NuQE
baseline, BAL-QE achieves 47% (En-Ru)
and 75% (En-De) of performance promo-
tions.

1 Introduction & Related work

Translation quality estimation (QE) has become
one of the important research topics in the dis-
cipline of machine translation (MT). QE aims to
solve the problem of how to evaluate the qual-
ity of the translation results and predict the types
of errors and locations (Specia et al., 2013), with
only source sentences and machine translation re-

(© 2020 The authors. This article is licensed under a Creative
Commons 3.0 licence, no derivative works, attribution, CC-
BY-ND.
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Figure 1: The architecture of BAL-QE, where two Trans-
formers are used to produce features in both direction, then,
being processed by dual Bottleneck Adapters and fed into
classifiers.

sults, without the post edited reference. (Junczys-
Dowmunt, 2019; Yang et al., 2019b; Yang et al.,
2019a). QE tasks can be divided into word level,
phrase level and sentence level. In this paper, we
only focus on word-level QE tasks.

There are two main categories of neural net-
work machine translation quality estimation sys-
tems, end-to-end neural network framework and
two-stage neural network architecture. A represen-
tative architecture of the first one is named Neural
QE (NuQE) (Kreutzer et al., 2015; Martins et al.,
2016), which directly predicts sequence labels by
passing source and MT results into a unified model
composed with several bi-LSTM layers. The other
one is Predictor-Estimator architecture (Kim and
Lee, 2016; Kim et al., 2017; Wang et al., 2018; Li
etal., 2018), which is composed of two subsequent
neural models: 1) a word prediction model that

Martins, Moniz, Fumega, Martins, Batista, Coheur, Parra, Trancoso, Turchi, Bisazza, Moorkens, Guerberof, Nurminen, Marg, Forcada (eds.)
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Figure 2: (Houlsby et al., 2019) The performance gain of
the transfer learning on 18 GLUE corpus, which is based

on adapters, which achieves 99.6% of SOTA performance by
only adding 3% of training parameters

predicts each word given the left and right context
of the source and target corpus, and 2) a quality es-
timation model, which estimates word-level labels
based on the features generated by the predictor.
Because the predictor itself can be regarded as a
neural machine translation (NMT) system, which
can be trained based on a large volume of exter-
nal parallel corpora and provides high quality se-
mantic features, Predictor-Estimator framework is
much better than NuQE.

Transfer learning (TL) or fine-tuning large pre-
trained language models (PLMs) is an effective
method in NLP, which can produce strong perfor-
mance on many NLP tasks (Dai and Le, 2015;
Howard and Ruder, 2018; Radford et al., 2018).
There are two types of transfer learning. The first
one is full-parameter fine-tuning with in-domain
data, which aims to fit the distribution of in-
domain data without damaging out-domain perfor-
mance. The other one is to add additional layers to
the original architecture as adapters and only up-
date those newly added layers, resulting in a sig-
nificant speed-up for fine-tuning. The Bottleneck
Adapter Layer (BAL) (Houlsby et al., 2019; Re-
buffi et al., 2017) proposed by Google in 2019,
shows that BAL-based transfer learning could ob-
tain 99.6% of the SOTA performance by only train-
ing 3% of the parameters.

The contribution of our paper is as follows:

e We propose an efficient transfer learn-
ing framework which transfers knowledge
learned from NMT tasks to QE tasks by fine-
tuning the pre-trained NMT model with QE
data.
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Figure 3: (Houlsby et al., 2019) Bottleneck Adapter Layer
for Transformer fine-tuning. Only three green parts in the
right, including Feedforward down-project, Nonlinearity and
Feedforward up-project, are need to be trained, the parame-
ters of the left transformer are fixed, total training parameters
ratio is 3%.

e We propose the BAL-QE which achieves
97% of the SOTA performance by only train-
ing the Bottleneck layer which is equivalent
to 3% of parameters of the entire model, and
converges within 4 hours. The model is open-
sourced.

2 Modelling of BAL-QE
2.1 Modelling of QE

For a word-level QE task, tokens correctly trans-
lated should be tagged as OK, while mistranslated
or ignored tagged as BAD. Besides, there should
be tags for gaps. We consider gaps as the po-
sition between each two words. Words correctly
aligned with the source are tagged as OK, other-
wise as BAD. If one or more words are missing in
the translation, their positions (gap) are tagged as
BAD, and OK otherwise. (Wang et al., 2019).

More formally, QE can be considered as taking
two sequences as inputs (i.e. source text and the
translated text (MT) required for evaluation) and
outputs a single sequence (i.e. tags), as shown in
Figure 4. When there are K tokens in MT, the
word tag should have same length, and the gap tag
should have a length of K + 1 which is the num-
ber of positions between two words as well as the
beginning and the end. The length of all tags is
2K + 1, representing the combination of word and
gap tags. Here, we define the QE system as a func-
tion f:

~

[61, ceey 62K+1] = f([xl, ceey xm], [yl; ceey :gk]) (1)
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Figure 4: An example of QE, where the word tag represents for whether the predicted token is correct, the gap tag means
whether there are missing words between two predicted words. All tag is the staggered arrangements of the word and the gap

tag.

where e represents tags, x is source text and g is the
translation. We stagger the word tags and gap tags
one by one to create the all tag sequence, where
even indices are word tags and odd indices are gap
tags (counting from 1). For a word tag, if the tag is
BAD, it means the translated word is incorrect or
has to be deleted. For a gap tag, if the tag is BAD,
it means there are missing words in the gap.

2.2 Optimized Loss Function

With the improvement of the performance of NMT
systems, the proportion of BAD tags becomes
much fewer than OK tags in QE corpus. There-
fore the loss function has to be optimized to handle
such imbalance. We optimize the imbalance from
three aspects: 1) Improving the effect of BAD tags
on the model. 2) Optimizing three losses with ap-
propriate weights. 3) Applying MCC as evaluation
metrics to obtain reasonable results.

To improve the effect of BAD tags, we use a
hyper-parameter « in the loss function to control
the punishments of incorrect prediction of BAD
tags. The newly introduced loss is denoted as fol-
lows:

e — d "Wlogp+ (1 —y)log(l —p)], ify=1
—afylogp+ (1 —y)log(l —p)], ify=0
(2)

where y = 1 represents for OK tag and y = 0
represents for BAD tag. The « is set as 9 in the
experiment due to the ratio of OK and BAD is
0.88:0.12 and 0.93:0.07 for word and gap tag re-
spectively (Wang et al., 2018; Wang et al., 2019).

Apart from the imbalance optimized loss, we
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also use multi-task learning to optimize the model
by simultaneously optimizing the loss of words,
gaps and all tags. The merged loss is represented

as:
L= ML} 3)
teT
where 7 = {all-tag, word-tag, gap-tag}, and
2T M = 1.

2.3 Evaluation Metrics

QE can be considered as a sequential labelling
problem with two classes. A fine-grained F1-score
and MCC are used to evaluate the results because
of the imbalance. The fine-grained Fl-score is
composed of Flyjj, Flyoq and Flg,,. For each F1,
it can be computed as F1; = Fl og X Flygap, t €
T. The F1 is calculated as standard form: F1=(2
X precision X recall) / (precision + recall)
Additionally, we use Matthews correlation coef-
ficient (MCC) for producing unbiased evaluations

over the unbalanced predictions. MCC is com-
puted as follows:
TP+ FN
S=——"-— 4
N C))
TP+ FP
P=——— 5
¥ 5)
L _sp
Mcce X (6)

~ /SP1-9)(1_P)

2.4 Model Architecture of BAL-QE

When applying transfer learning on QE, we need
a pre-trained NMT model and an adapter layer for



MT(ALL) MT(Word) MT(Gap)
Flg F1-BAD  F1-OK MCC Flyord F1-BAD  F1-OK MCC Flgp FI-BAD  FI-OK MCC
UNBABEL 0.45961  0.478018 0.960251 0.401625 0.48894  0.529076 0.924197 0.418838 0.18664 0.189196 0.984127  0.1836
ETRI 0.3895 0.4051 0.9617 0.3325 0.4215 0.4561 0.924 0.34675 0.1609 0.1631 0.9803 0.152
EN_RU baseline 0.2412 0.250005  0.9325 02145  0.222286 0.284211 0914 0.21913  0.101053 0.102 0.932 0.096
Uni BAL-QE  0.35055 0.36459 0.942 029925  0.37935  0.41049 0.922 0.312075  0.1358 0.14679 0.972 0.1368
Bi BAL-QE ~ 0.424555  0.441559  0.96098  0.367063  0.45522  0.492588 0.924098 0.382794  0.1876  0.176148 0.982213  0.1678
UNBABEL  0.4523324 0.47 0.962 0.380471 0.495305  0.5336  0.933962 0.367166 0.313835 0.317975 0.987382  0.2737
ETRI 0.4028 0.4198 0.9595  0.342088  0.4307 0.464 0.9283  0.319275  0.2729 0.2765 0.9871 0.238
EN_DE baseline 0.2974 0311702 0.954984 0.254 0.319795  0.34452  0.927326 0.237062 0.202628 0.205301 0.985366 0.175172
Uni BAL-QE  0.346408  0.361028 0.955679 0.294195 0.370402 0.39904 0.948718 0.274577 0.234694  0.23779  0.987342  0.20468
Bi BAL-QE  0.4275662  0.4449 0.96075  0.361279 0.463003  0.4988  0.931131 0.343221 0.293368 0.297238 0.987241  0.25585

Table 1: The experimental result, note that top-2 results are bold. Flai, Fluow, Flwg are the multiplication of F1-OK and
F1-BAD in specific level.

Split  Pair Sentences Words BAD source BAD target HTER
Train EN-DE 13,442 234,725 28,549(12.16%) 37.040(7.06%) 0.15(£0.19)
EN-RU 15,089 148,551 15,599 (10.50%) 18,380 (6.15%) 0.13 (£0.24)
Dev EN-DE 1,000 17,669 2,113 (11.96%) 2,654 (6.73%)  0.15 (£0.19)
EN-RU 1,000 9,710 1,055 (10.87%) 1,209 (6.17%)  0.13 (£0.23)
Test EN-DE 1,023 17,649 2,415 (13.68%) 3,136 (8.04%)  0.17 (£0.19)
EN-RU 1,023 7,778 1,049 (13.49%) 1,165 (7.46%)  0.17 (£0.28)

Table 2: The detail of WMT19 QE dataset

downstream tasks. However, different from orig-
inal MT tasks which generate tokens depending
on previous history, the input of QE is a known
sequence which means that when evaluating the
token in the current step, we can use future con-
texts. Therefore, we propose the BAL-QE model
which contains three parts: 1) Two pre-trained
NMT models, Mg and Mgyr. 2) Two Bottle-
neck Adapters for decoders of Mg and Mgor. 3)
A classifier layer.

The two pre-trained NMT models are
Transformer-big (Ng et al.,, 2019; Junczys-
Dowmunt, 2019), including 6 encoders and 6
decoders composed of multi-head self-attentions
and cross-attentions.  The only difference of
the two Transformers used in BAL-QE is the
generating direction.

As shown in Figure 3, the Bottleneck Adapter
is like an auto-encoder (Houlsby et al., 2019;
Artetxe and Schwenk, 2019; Howard and Ruder,
2018; Rebuffi et al., 2017), which is composed
of three parts: 1) The feed-forward down-project,
which maps the input vector into low-dimensional
space. 2) The nonlinear layer, which is actually
is an activation function. 3) The feed-forward up-
project, which recovers the vector back to high-
dimensional space. 4) A residual connection be-
tween the inputs and outputs.

32

The last classifier layer is a linear layer, which
takes the concatenated output vectors from two
adapters as input, and makes binary classification
of each tag. Not surprisingly, we find that bidirec-
tional predictor (dual Transformer) could improve
8% of the performance compared with unidirec-
tional predictor (single Transformer).

3 Experiment

3.1 Dataset

The Dataset used in the experiment is from
WMT19 Quality Evaluation Task1, including two
languages (En-De, En-Ru). There are 13,000 sen-
tence pairs for En-De, with approximately 234,000
tokens. The proportion of BAD tag in German MT
sentences is 7.06%. En-Ru contains totally 15,000
sentence pairs with 148,000 tokens and 6.15% of
BAD tags. More details are shown in Table 2.

3.2 Setup of Pre-training Two Transformers

The pre-training of the Transformer is similar
with the setup of FAIR SOTA model in WMT19
(Ng et al, 2019), which is implemented with
fairseq!. BPE is used for tokenizing, where 32000
tokens are reserved. We use UN corpus and
Common Crawl parallel corpus with the size of

"https://github.com/pytorch/fairseq



Total Params

Training Params

Training Ratio

Uni BAL-QE 216,235,012 6,323,204
12,

Bi BAL-QE 432,470,002

2.92%

646,406 2.92%

Table 3: The comparison of parameters of BAL-QE

27,000,000. We also use back-translation to pro-
duce 20,000,000 augmented corpus. The BLEU of
M;or and Mgy, are 42.3 and 41.8 for EN-DE, 36.2
and 35.9 for EN-RU respectively, with less than
2% of difference compared with the SOTA result
of published fairseq implementation.

3.3 Setup of Fine-tuning BAL-QE

In the fine-tuning of BAL-QE, the parameter of
two Transformers are fixed, and we only update
the two adapters as well as the classifier, which
means that only 2.92% of parameters are trained
in the fine-tuning, as shown in Table 3. Adam
is used as the optimizer with a triangular learn-
ing rate schedule with peak learning rate as Se-
5. We use a maximum of 1,024 tokens per batch
and save checkpoints every 1,000 steps, on the ex-
ponential moving averaged parameters (Junczys-
Dowmunt, 2019) with a decay rate of le-4. BPE
is applied with subword-nmt, and 32,000 tokens
are reserved. It takes 2 hours and 38 minutes and
4 hours and 02 minutes to train the unidirectional
and bidirectional BAL-QE on 4 Titan XP GPUs,
respectively.

3.4 Analysis

As shown in Table 1, MT (ALL), MT (Word) and
MT (Gap) represents evaluation results of All Tag,
Word Tag and Gap Tag, respectively. The base-
line is a model of NuQE. On En-De and Ee-Ru
datasets, the unidirectional BAL-QE improves per-
formance by 17% and 45%, and the bidirectional
BAL-QE improves by 44% and 75%, compared
with the baseline. All metrics of bidirectional
BAL-QE achieves top-2 rank, and the F1-OK of
En-Ru achieves the SOTA result.

4 Conclusion

This paper proposes a Predictor-Estimator QE
model based on the Bottleneck Adapter Layer and
the Transformer. An efficient transfer learning
framework is also proposed, which could trans-
fer knowledge learned from NMT parallel cor-
pora into the QE task to improve the training ef-
ficiency of the proposed BAL-QE model. Experi-
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ments shows that partially training the model (esti-
mator) could effectively speed up the training and
achieves 97% of the SOTA performance.
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Abstract

This paper studies the practicality of the
current state-of-the-art unsupervised meth-
ods in neural machine translation (NMT).
In ten translation tasks with various data
settings, we analyze the conditions un-
der which the unsupervised methods fail
to produce reasonable translations. We
show that their performance is severely af-
fected by linguistic dissimilarity and do-
main mismatch between source and tar-
get monolingual data. Such conditions
are common for low-resource language
pairs, where unsupervised learning works
poorly. In all of our experiments, super-
vised and semi-supervised baselines with
50k-sentence bilingual data outperform the
best unsupervised results. Our analyses
pinpoint the limits of the current unsuper-
vised NMT and also suggest immediate re-
search directions.

1 Introduction

Statistical methods for machine translation (MT)
require a large set of sentence pairs in two lan-
guages to build a decent translation system (Resnik
and Smith, 2003; Koehn, 2005). Such bilingual
data is scarce for most language pairs and its
quality varies largely over different domains (Al-
Onaizan et al., 2002; Chu and Wang, 2018). Neu-
ral machine translation (NMT) (Bahdanau et al.,
2015; Vaswani et al., 2017), the standard paradigm
of MT these days, has been claimed to suffer from
the data scarcity more severely than phrase-based
MT (Koehn and Knowles, 2017).

Unsupervised NMT, which trains a neural trans-
lation model only with monolingual corpora, was
T The author is now at DeepL. GmbH.
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proposed for those scenarios which lack bilingual
data (Artetxe et al., 2018b; Lample et al., 2018a).
Despite its progress in research, the performance
of the unsupervised methods has been evalu-
ated mostly on high-resource language pairs, e.g.
German<>English or French<»English (Artetxe et
al., 2018b; Lample et al., 2018a; Yang et al., 2018;
Artetxe et al., 2018a; Lample et al., 2018b; Ren et
al., 2019b; Artetxe et al., 2019; Sun et al., 2019;
Sen et al., 2019). For these language pairs, huge
bilingual corpora are already available, so there
is no need for unsupervised learning in practice.
Empirical results in these tasks do not carry over
to low-resource language pairs; they simply fail to
produce any meaningful translations (Neubig and
Hu, 2018; Guzman et al., 2019).

This paper aims for a more comprehensive and
pragmatic study on the performance of unsuper-
vised NMT. Our experiments span ten translation
tasks in the following five language pairs:

e German<+English: similar languages, abun-
dant bilingual/monolingual data

e Russian<>English: distant languages, abun-
dant bilingual/monolingual data, similar sizes
of the alphabet

o Chinese«+>English: distant languages, abun-
dant bilingual/monolingual data, very differ-
ent sizes of the alphabet

o Kazakh«+English: distant languages, scarce
bilingual data, abundant monolingual data

e Gujarati<»English: distant languages, scarce
bilingual/monolingual data

For each task, we compare the unsupervised per-
formance with its supervised and semi-supervised
counterparts. In addition, we make the monolin-
gual training data vary in size and domain to cover
many more scenarios, showing under which con-
ditions unsupervised NMT works poorly.

Here is a summary of our contributions:
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e We thoroughly evaluate the performance of
state-of-the-art unsupervised NMT in numer-
ous real and artificial translation tasks.

e We provide guidelines on whether to employ
unsupervised NMT in practice, by showing
how much bilingual data is sufficient to out-
perform the unsupervised results.

e We clarify which factors make unsupervised
NMT weak and which points must be im-
proved, by analyzing the results both quan-
titatively and qualitatively.

2 Related Work

The idea of unsupervised MT dates back to word-
based decipherment methods (Knight et al., 2006;
Ravi and Knight, 2011). They learn only lexicon
models at first, but add alignment models (Dou et
al., 2014; Nuhn, 2019) or heuristic features (Naim
et al., 2018) later. Finally, Artetxe et al. (2018a)
and Lample et al. (2018b) train a fully-fledged
phrase-based MT system in an unsupervised way.

With neural networks, unsupervised learning of
a sequence-to-sequence NMT model has been pro-
posed by Lample et al. (2018a) and Artetxe et al.
(2018b). Though having slight variations (Yang et
al., 2018; Sun et al., 2019; Sen et al., 2019), un-
supervised NMT approaches commonly 1) learn
a shared model for both source—target and
target—source 2) using iterative back-translation,
along with 3) a denoising autoencoder objective.
They are initialized with either cross-lingual word
embeddings or a cross-lingual language model
(LM). To further improve the performance at the
cost of efficiency, Lample et al. (2018b), Ren et
al. (2019b) and Artetxe et al. (2019) combine un-
supervised NMT with unsupervised phrase-based
MT. On the other hand, one can also avoid the
long iterative training by applying a separate de-
noiser directly to the word-by-word translations
from cross-lingual word embeddings (Kim et al.,
2018; Pourdamghani et al., 2019).

Unsupervised NMT approaches have been so
far evaluated mostly on high-resource language
pairs, e.g. French—English, for academic pur-
poses. In terms of practicality, they tend to un-
derperform in low-resource language pairs, e.g.
Azerbaijani—English (Neubig and Hu, 2018) or
Nepali—English (Guzmén et al., 2019). To the
best of our knowledge, this work is the first to
systematically evaluate and analyze unsupervised
learning for NMT in various data settings.
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3 Unsupervised NMT

This section reviews the core concepts of the re-
cent unsupervised NMT framework and describes
to which points they are potentially vulnerable.

3.1 Bidirectional Modeling

Most of the unsupervised NMT methods share
the model parameters between source—target and
target—source directions. They also often share a
joint subword vocabulary across the two languages
(Sennrich et al., 2016b).

Sharing a model among different translation
tasks has been shown to be effective in multilin-
gual NMT (Firat et al., 2016; Johnson et al., 2017;
Aharoni et al., 2019), especially in improving per-
formance on low-resource language pairs. This
is due to the commonality of natural languages;
learning to represent a language is helpful to rep-
resent other languages, e.g. by transferring knowl-
edge of general sentence structures. It also pro-
vides good regularization for the model.

Unsupervised learning is an extreme scenario
of MT, where bilingual information is very weak.
To supplement the weak and noisy training signal,
knowledge transfer and regularization are crucial,
which can be achieved by the bidirectional sharing.
It is based on the fact that a translation problem is
dual in nature; source—target and target—source
tasks are conceptually related to each other.

Previous works on unsupervised NMT vary in
the degree of sharing: the whole encoder (Artetxe
et al., 2018b; Sen et al., 2019), the middle layers
(Yang et al., 2018; Sun et al., 2019), or the whole
model (Lample et al., 2018a; Lample et al., 2018b;
Ren et al., 2019a; Conneau and Lample, 2019).

Note that the network sharing is less effective
among linguistically distinct languages in NMT
(Kocmi and Bojar, 2018; Kim et al., 2019a). It still
works as a regularizer, but transferring knowledge
is harder if the morphology or word order is quite
different. We show how well unsupervised NMT
performs on such language pairs in Section 4.1.

3.2 Iterative Back-Translation

Unsupervised learning for MT assumes no bilin-
gual data for training. A traditional remedy for the
data scarcity is generating synthetic bilingual data
from monolingual text (Koehn, 2005; Schwenk,
2008; Sennrich et al., 2016a). To train a bidirec-
tional model of Section 3.1, we need bilingual data
of both translation directions. Therefore, most un-



supervised NMT methods back-translate in both
directions, i.e. source and target monolingual data
to target and source language, respectively.

In unsupervised learning, the synthetic data
should be created not only once at the beginning
but also repeatedly throughout the training. At the
early stages of training, the model might be too
weak to generate good translations. Hence, most
methods update the training data as the model gets
improved during training. The improved model
for source—target direction back-translates source
monolingual data, which improves the model for
target—source direction, and vice versa. This cy-
cle is called dual learning (He et al., 2016) or itera-
tive back-translation (Hoang et al., 2018). Figure 1
shows the case when it is applied to a fully shared
bidirectional model.

target
translation

source
sentence

source/target
joint vocabulary

source
translation

target
sentence

source/target
joint vocabulary

decoder decoder
1) I ) 1) I L)
encoder encoder

source/target
joint vocabulary

v

source/target
joint vocabulary

source
sentence

(a)

¥
target
translation

target
sentence

(b)

source
translation

Figure 1: Iterative back-translation for training a bidirec-
tional sequence-to-sequence model. The model first translates
monolingual sentences (solid arrows), and then gets trained
with the translation as the input and the original as the out-
put (dashed arrows). This procedure alternates between (a)
source—target and (b) target—source translations.

One can tune the amount of back-translations
per iteration: a mini-batch (Artetxe et al., 2018b;
Yang et al., 2018; Conneau and Lample, 2019; Ren
et al., 2019a), the whole monolingual data (Lam-
ple et al., 2018a; Lample et al., 2018b; Sun et
al., 2019), or some size in between (Artetxe et al.,
2019; Ren et al., 2019Db).

However, even if carefully scheduled, the itera-
tive training cannot recover from a bad optimum if
the initial model is too poor. Experiments in Sec-
tion 4.5 highlight such cases.
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3.3 Initialization

To kickstart the iterative training, the model should
be able to generate meaningful translations already
in the first iteration. We cannot expect the training
to progress from a randomly initialized network
and the synthetic data generated by it.

Cross-lingual embeddings give a good starting
point for the model by defining a joint continu-
ous space shared by multiple languages. Ideally, in
such a space, close embedding vectors are seman-
tically related to each other regardless of their lan-
guages; they can be possible candidates for transla-
tion pairs (Mikolov et al., 2013). It can be learned
either in word level (Artetxe et al., 2017; Conneau
et al., 2018) or in sentence level (Conneau and
Lample, 2019) using only monolingual corpora.

In the word level, we can initialize the em-
bedding layers with cross-lingual word embed-
ding vectors (Artetxe et al., 2018b; Lample et al.,
2018a; Yang et al., 2018; Lample et al., 2018b;
Artetxe et al., 2019; Sun et al., 2019). On the other
hand, the whole encoder/decoder parameters can
be initialized with cross-lingual sequence training
(Conneau and Lample, 2019; Ren et al., 2019a;
Song et al., 2019).

Cross-lingual word embedding has limited per-
formance among distant languages (Sggaard et al.,
2018; Nakashole and Flauger, 2018) and so does
cross-lingual LM (Pires et al., 2019). Section 4.5
shows the impact of a poor initialization.

3.4 Denoising Autoencoder

Initializing the word embedding layers furnishes
the model with cross-lingual matching in the lex-
ical embedding space, but does not provide any
information on word orders or generation of text.
Cross-lingual LMs encode word sequences in dif-
ferent languages, but they are not explicitly trained
to reorder source words to the target language syn-
tax. Both ways do not initialize the crucial param-
eters for reordering: the encoder-decoder attention
and the recurrence on decoder states.

As a result, an initial model for unsupervised
NMT tends to generate word-by-word translations
with little reordering, which are very non-fluent
when source and target languages have distinct
word orders. Training on such data discourages the
model from reordering words, which might cause
a vicious cycle by generating even less-reordered
synthetic sentence pairs in the next iterations.

Accordingly, unsupervised NMT employs an



de-en ru-en zh-en kk-en gu-en
German English  Russian  English  Chinese  English  Kazakh  English  Gujarati  English
Language family Germanic Germanic  Slavic  Germanic  Sinitic  Germanic Turkic Germanic  Indic ~ Germanic
Alphabet Size 60 52 66 52 8,105 52 42 52 91 52
Monolineual Sentences 100M 71.6M 30.8M 18.5M 4.1M
€ Words 1.8B 2.3B 1.1B 2.0B 1.4B 699M  2785M  421.5M  121.5M 93.8M
Bili | Sentences 5.9M 25.4M 18.9M 222k 156k
P Words  1374M 1449M  618.6M  790M  4403M  4829M  1.6M  19M  23M  1.5M

Table 1: Training data statistics.

additional training objective of denoising autoen-
coding (Hill et al., 2016). Given a clean sentence,
artificial noises are injected, e.g. deletion or per-
mutation of words, to make a corrupted input. The
denoising objective trains the model to reorder the
noisy input to the correct syntax, which is essen-
tial for generating fluent outputs. This is done for
each language individually with monolingual data,
as shown in Figure 2.

source
sentence

target
sentence

; ;
source/target
joint vocabulary

decoder

TR

encoder

1

source/target
joint vocabulary

¥ ¥
noisy noisy
source target

Figure 2: Denoising autoencoder training for source or target
language.

Once the model is sufficiently trained for de-
noising, it is helpful to remove the objective or re-
duce its weight (Graca et al., 2018). At the later
stages of training, the model gets improved in re-
ordering and translates better; learning to denoise
might hurt the performance in clean test sets.

4 Experiments and Analysis

Data Our experiments were conducted on
WMT 2018 German<+English and Russian<+ En-
glish, WMT 2019 Chinese<+English, Kazakh«>
English, and Gujarati<+English (Table 1). We pre-
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processed the data using the MOSES' tokenizer
and a frequent caser. For Chinese, we used the
JIEBA segmenter’. Lastly, byte pair encoding
(BPE) (Sennrich et al., 2016b) was learned jointly
over source and target languages with 32k merges
and applied without vocabulary threshold.

Model  We used 6-layer Transformer base ar-
chitecture (Vaswani et al., 2017) by default:
512-dimension embedding/hidden layers, 2048-
dimension feedforward sublayers, and 8 heads.

Decoding and Evaluation = Decoding was done
with beam size 5. We evaluated the test perfor-
mance with SACREBLEU (Post, 2018).

Unsupervised Learning We ran XLM? by
Conneau and Lample (2019) for the unsupervised
experiments. The back-translations were done
with beam search for each mini-batch of 16k to-
kens. The weight of the denoising objective started
with 1 and linearly decreased to 0.1 until 100k up-
dates, and then decreased to 0 until 300k updates.
The model’s encoder and decoder were both
initialized with the same pre-trained cross-lingual
LM. We removed the language embeddings from
the encoder for better cross-linguality (see Section
4.6). Unless otherwise specified, we used the same
monolingual training data for both pre-training and
translation training. For the pre-training, we set the
batch size to 256 sentences (around 66k tokens).
Training was done with Adam (Kingma and Ba,
2014) with an initial learning rate of 0.0001, where
dropout (Srivastava et al., 2014) of probability 0.1
was applied to each layer output and attention
components. With a checkpoint frequency of 200k
sentences, we stopped the training when the val-
idation perplexity (pre-training) or BLEU (trans-
lation training) was not improved for ten check-

"hitp://www.statmt.org/moses
“https://github.com/fxsjy/jieba
3https://github.com/facebookresearch/XLM



BLEU [%]

Approach de-en en-de ru-en en-ru zh-en en-zh Kkk-en en-kk gu-en en-gu
Supervised 395 391 291 247 262 396 103 24 9.9 3.5
Semi-supervised 43.6 41.0 308 288 259 427 125 3.1 142 4.0
Unsupervised 238 202 120 94 1.5 2.5 2.0 0.8 0.6 0.6

Table 2: Comparison among supervised, semi-supervised, and unsupervised learning. All bilingual data was used for the
(semi-)supervised results and all monolingual data was used for the unsupervised results (see Table 1). All results are computed
on newstest2019 of each task, except for de-en/en-de and ru-en/en-ru on newstest2018.

points. We extensively tuned the hyperparameters
for a single GPU with 12GB memory, which is
widely applicable to moderate industrial/academic
environments. All other hyperparameter values
follow the recommended settings of X1L.M.

Supervised Learning  Supervised experiments
used the same hyperparameters as the unsuper-
vised learning, except 12k tokens for the batch
size, 0.0002 for the initial learning rate, and 10k
batches for each checkpoint.

If the bilingual training data contains less than
500k sentence pairs, we reduced the BPE merges
to 8k, the batch size to 2k, and the checkpoint
frequency to 4k batches; we also increased the
dropout rate to 0.3 (Sennrich and Zhang, 2019).

Semi-supervised Learning Semi-supervised
experiments continued the training from the super-
vised baseline with back-translations added to the
training data. We used 4M back-translated sen-
tences for the low-resource cases, i.e. if the orig-
inal bilingual data has less than 500k lines, and
10M back-translated sentences otherwise.

4.1 Unsupervised vs. (Semi-)Supervised

We first address the most general question of this
paper: For NMT, can unsupervised learning re-
place semi-supervised or supervised learning? Ta-
ble 2 compares the unsupervised performance to
simple supervised and semi-supervised baselines.

In all tasks, unsupervised learning shows much
worse performance than (semi-)supervised learn-
ing. It produces readable translations in two
high-resource language pairs (German<>English
and Russian<>English), but their scores are only
around half of the semi-supervised systems. In
other three language pairs, unsupervised NMT
fails to converge at any meaningful optimum,
reaching less than 3% BLEU scores. Note that,
in these three tasks, source and target languages
are very different in the alphabet, morphology, and
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Figure 3: Supervised and semi-supervised learning over
bilingual training data size. Unsupervised learning (horizon-
tal line) uses all monolingual data of Table 1.

word order, etc. The results in Kazakh<+English
and Gujarati<+English show that the current unsu-
pervised NMT cannot be an alternative to (semi-
)supervised NMT in low-resource conditions.

To discover the precise condition where the
unsupervised learning is useful in practice, we
vary the size of the given bilingual training data
for (semi-)supervised learning and plot the re-
sults in Figure 3. Once we have 50k bilingual
sentence pairs in German<>English, simple semi-
supervised learning already outperforms unsuper-
vised learning with 100M monolingual sentences



in each language. Even without back-translations
(supervised), 100k-sentence bilingual data is suffi-
cient to surpass unsupervised NMT.

In the Russian«+English task, the unsupervised
learning performance can be more easily achieved
with only 20k bilingual sentence pairs using semi-
supervised learning. This might be due to that Rus-
sian and English are more distant to each other
than German and English, thus bilingual training
signal is more crucial for Russian<+>English.

Note that for these two language pairs, the bilin-
gual data for supervised learning are from many
different text domains, whereas the monolingual
data are from exactly the same domain of the test
sets. Even with such an advantage, the large-scale
unsupervised NMT cannot compete with super-
vised NMT with tiny out-of-domain bilingual data.

4.2 Monolingual Data Size

In this section, we analyze how much monolin-
gual data is necessary to make unsupervised NMT
produce reasonable performance. Figure 4 shows
the unsupervised results with different amounts of
monolingual training data. We keep the equal size
for source and target data, and the domain is also
the same for both (web-crawled news).
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Figure 4: Unsupervised NMT performance over the size of
monolingual training data, where source and target sides have
the same size.

For German—English, training with only 1M
sentences already gives a reasonable performance,
which is only around 2% BLEU behind the 100M-
sentence case. The performance starts to saturate
already after SM sentences, with only marginal im-
provements by using more than 20M sentences.
We observe a similar trend in Russian—English.

This shows that, for the performance of unsu-
pervised NMT, using a massive amount of mono-
lingual data is not as important as the similarity

40

of source and target languages. Comparing to su-
pervised learning (see Figure 3), the performance
saturates faster when increasing the training data,
given the same model size.

4.3 Unbalanced Data Size

What if the size of available monolingual data is
largely different for source and target languages?
This is often the case for low-resource language
pairs involving English, where there is plenty of
data for English but not for the other side.

Our experiments so far intentionally use the
same number of sentences for both sides. In Fig-
ure 5, we reduced the source data gradually while
keeping the large target data fixed. To counteract
the data imbalance, we oversampled the smaller
side to make the ratio of source-target 1:1 for
BPE learning and mini-batch construction (Con-
neau and Lample, 2019). We compare such un-
balanced data settings to the previous equal-sized
source/target settings.

T T
=—Cm= de-en (equal)
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=== ry-en (equal)
=O= ru-en (unbalanced)
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Figure 5: Unsupervised NMT performance over source train-
ing data size, where the target training data is fixed to 20M
sentences (dashed line). Solid line is the case where the target
data has the same number of sentences as the source side.

Interestingly, when we decrease the target data
accordingly (balanced, solid line), the performance
is similar or sometimes better than using the full
target data (unbalanced, dashed line). This means
that it is not beneficial to use oversized data on one
side in unsupervised NMT training.

If the data is severely unbalanced, the distribu-
tion of the smaller side should be much sparser
than that of the larger side. The network tries to
generalize more on the smaller data, reserving the
model capacity for smoothing (Olson et al., 2018).
Thus it learns to represent a very different distribu-
tion of each side, which is challenging in a shared
model (Section 3.1). This could be the reason for



no merit in using larger data on one side.

4.4 Domain Similarity

In high-resource language pairs, it is feasible to
collect monolingual data of the same domain on
both source and target languages. However, for
low-resource language pairs, it is difficult to match
the data domain of both sides on a large scale.
For example, our monolingual data for Kazakh is
mostly from Wikipedia and Common Crawl, while
the English data is solely from News Crawl. In
this section, we study how the domain similarity
of monolingual data on the two sides affects the
performance of unsupervised NMT.

In Table 3, we artificially change the domain of
the source side to politics (UN Corpus*) or random
(Common Crawl), while keeping the target domain
fixed to newswire (News Crawl). The results show
that the domain matching is critical for unsuper-
vised NMT. For instance, although German and
English are very similar languages, we see the per-
formance of German<-English deteriorate down to
-11.8% BLEU by the domain mismatch.

Domain  Domain BLEU [%]
(en) (de/ru) de-en en-de ru-en en-ru
Newswire 233 199 119 93
Newswire  Politics 115 122 23 2.5
Random 184 164 6.9 6.1

Table 3: Unsupervised NMT performance where source and
target training data are from different domains. The data size
on both sides is the same (20M sentences).

Table 4 shows a more delicate case where we
keep the same domain for both sides (newswire)
but change the providers and years of the news
articles. Our monolingual data for Chinese (Ta-
ble 1) consist mainly of News Crawl (from years
2008-2018) and Gigaword 4th edition (from years
1995-2008). We split out the News Crawl part
(1.7M sentences) and trained an unsupervised
NMT model with the same amount of English
monolingual data (from News Crawl 2014-2017).
Surprisingly, this experiment yields much better
results than using all available data. Even if the
size is small, the source and target data are col-
lected in the same way (web-crawling) from sim-
ilar years (2010s), which seems to be crucial for
unsupervised NMT to work.

On the other hand, when using the Gigaword
part (28.6M sentences) on Chinese, unsupervised

“https://conferences.unite.un.org/uncorpus

Years Years #sents BLEU [%]
(en) (zh) (en/zh) zh-en en-zh
2014-2017 2008-2018 1.7M 5.4 15.1

1995-2008 28.6M 1.5 1.9

Table 4: Unsupervised NMT performance where source and
target training data are from the same domain (newswire) but
different years.

learning again does not function properly. Now the
source and target text are from different decades;
the distribution of topics might be different. Also,
the Gigaword corpus is from traditional newspaper
agencies which can have a different tone from the
online text of News Crawl. Despite the large scale,
unsupervised NMT proves to be sensitive to a sub-
tle discrepancy of topic, style, period, etc. between
source and target data.

These results agree with Sggaard et al. (2018)
who show that modern cross-lingual word embed-
ding methods fail in domain mismatch scenarios.

4.5 Initialization vs. Translation Training

Thus far, we have seen a number of cases where
unsupervised NMT breaks down. But which part
of the learning algorithm is more responsible for
the performance: initialization (Section 3.3) or
translation training (Section 3.2 and 3.4)?

In Figure 6, we control the level of each of
the two training stages and analyze its impact on
the final performance. We pre-trained two cross-
lingual LMs as initializations of different quality:
bad (using 10k sentences) and good (using 20M
sentences). For each initial point, we continued the
translation training with different amounts of data
from 10k to 20M sentences.

=== de-en (init 20M)

25
5 = o= de-en (init 10k)

N
o
T

BLEU [%]
=
(6]

10+

5l p__o..o--o-.o-o-o---o.o_o

10* 10° 108 107
monolingual training sentences
Figure 6: Unsupervised NMT performance over the training

data size for translation training, where the pre-training data
for initialization is fixed (10k or 20M sentences).

From the bad initialization, unsupervised learn-
ing cannot build a reasonable NMT model, no mat-



Task  BLEU [%]

Source input

System output

Reference output

Seit der ersten Besichtigung wurde die

Since the first Besichtigung, the 3,000

Since the first viewing, the 1,000sq

23.8
de-en 1.000 Quadratfufs groBe ... square fueled ... ft flat has ...
104 Miinchen 1856: Vier Karten, die Thren Austrailia 1856: Eight things that can Munich 1856: Four maps that will
' Blick auf die Stadt verindern keep your way to the UK change your view of the city
B xone nepBoodepennbix oneparus- The mepBoodepennbix onepatus- The identity of the mother was de-
ru-en 12.0 HO-CJIEJICTBEHHBIX MEPOIPUATHI yC- HO-CIeJCTBEHHBIX MepounpudaTuii termined during preliminary inves-
TAHOBJIEHA JINYHOCTH POYKEHUIIBI have been established by the dolphin tigative and operational measures
zh-en s < PR A P TR AT TR . JABEEARIA T2 and JHPRTE ... adjustment must balance produc-

tion needs with consumer demands.

Table 5: Problematic translation outputs from unsupervised NMT systems (input copying, ambiguity in the same context).

ter how much data is used in translation training.
When the initial model is strong, it is possible to
reach 20% BLEU by translation training with only
100k sentences. Using 1M sentences in transla-
tion training, the performance is already compa-
rable to its best. Once the model is pre-trained
well for cross-lingual representations, fine-tuning
the translation-specific components seems man-
ageable with relatively small data.

This demonstrates the importance of initializa-
tion over translation training in the current unsu-
pervised NMT. Translation training relies solely
on model-generated inputs, i.e. back-translations,
which do not reflect the true distribution of the in-
put language when generated with a poor initial
model. On Figure 7, we plot all German—English
unsupervised results we conducted up to the pre-
vious section. It shows that the final performance
generally correlates with the initialization quality.

N
o

BLEU [%)]
=
[6,]

[N

o
X
L

X

X
L L

29 2%

0 27 20

25 27 28
initial LM perplexity

Figure 7: Unsupervised NMT performance over the valida-
tion perplexity of the initial cross-lingual LM (de-en).

4.6 Qualitative Examples

In this section, we analyze translation outputs of
unsupervised systems to find out why they record
such low BLEU scores. Do unsupervised systems
have particular problems in the outputs other than
limited adequacy/fluency?
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Table 5 shows translation examples from the un-
supervised systems. The first notable problem is
copying input words to the output. This happens
when the encoder has poor cross-linguality, i.e.
does not concurrently model two languages well
in a shared space. The decoder then can easily de-
tect the input language by reading the encoder and
may emit output words in the same language.

A good cross-lingual encoder should not give
away information on the input language to the de-
coder. The decoder must instead rely on the ouptut
language embeddings or an indicator token (e.g.
<2en>) to determine the language of output to-
kens. As a simple remedy, we removed the lan-
guage embeddings from the encoder and obtained
consistent improvements, e.g. from 4.3% to 11.9%
BLEU in Russian—English. However, the problem
still remains partly even in our best-performing un-
supervised system (the first example).

The copying occurs more often in inferior sys-
tems (the last example), where the poor initial
cross-lingual LM is the main reason for the worse
performance (Section 4.5). Note that the auto-
encoding (Section 3.4) also encourages the model
to generate outputs in the input language.

Another problem is that the model cannot distin-
guish words that appear in the same context. In the
second example, the model knows that Vier in Ger-
man (Four in English) is a number, but it generates
a wrong number in English (Eight). The initial LM
is trained to predict either Four or Eight given the
same surrounding words (e.g. 1856, things) and
has no clue to map Four to Vier.

The model cannot learn these mappings by itself
with back-translations. This problem can be partly
solved by subword modeling (Bojanowski et al.,
2017) or orthographic features (Riley and Gildea,
2018; Artetxe et al., 2019), which are however not
effective for language pairs with disjoint alphabets.



5 Conclusion and Outlook

In this paper, we examine the state-of-the-art un-
supervised NMT in a wide range of tasks and data
settings. We find that the performance of unsuper-
vised NMT is seriously affected by these factors:

e Linguistic similarity of source and target lan-
guages

e Domain similarity of training data between
source and target languages

It is very hard to fulfill these in low-/zero-resource
language pairs, which makes the current unsuper-
vised NMT useless in practice. We also find that
the performance is not improved by using massive
monolingual data on one or both sides.

In practice, a simple, non-tuned semi-supervised
baseline with only less than 50k bilingual sen-
tence pairs is sufficient to outperform our best
large-scale unsupervised system. At this moment,
we cannot recommend unsupervised learning for
building MT products if there are at least small
bilingual data.

For the cases where there is no bilingual data
available at all, we plan to systematically com-
pare the unsupervised NMT to pivot-based meth-
ods (Kim et al., 2019b; Currey and Heafield, 2019)
or multilingual zero-shot translation (Johnson et
al., 2017; Aharoni et al., 2019).

To make unsupervised NMT useful in the future,
we suggest the following research directions:

Language-/Domain-agnostic LM We show in
Section 4.5 that the initial cross-lingual LM actu-
ally determines the performance of unsupervised
NMT. In Section 4.6, we argue that the poor perfor-
mance is due to input copying, for which we blame
a poor cross-lingual LM. The LM pre-training
must therefore handle dissimilar languages and do-
mains equally well. This might be done by careful
data selection or better regularization methods.

Robust Translation Training On the other
hand, the current unsupervised NMT lacks a mech-
anism to bootstrap out of a poor initialization. In-
spired by classical decipherment methods (Section
2), we might devalue noisy training examples or
artificially simplify the problem first.
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Abstract

The correct translation of named entities
(NEs) still poses a challenge for conven-
tional neural machine translation (NMT)
systems. This study explores methods
incorporating named entity recognition
(NER) into NMT with the aim to improve
named entity translation. It proposes an
annotation method that integrates named
entities and inside—outside-beginning
(IOB) tagging into the neural network
input with the use of source factors. Our
experiments on English—+German and
English— Chinese show that just by
including different NE classes and 10B
tagging, we can increase the BLEU score
by around 1 point using the standard test
set from WMT2019 and achieve up to
12% increase in NE translation rates over
a strong baseline.

1 Introduction

The translation of named entities (NE) is challeng-
ing because new phrases appear on a daily basis
and many named entities are domain specific, not
to be found in bilingual dictionaries. Improving
named entity translation is important to transla-
tion systems and cross-language information re-
trieval applications (Jiang et al., 2007). Conven-
tional neural machine translation (NMT) systems
are expected to translate NEs by learning complex
linguistic aspects and ambiguous terms from the
training corpus only. When faced with named en-
tities, they are found to be occasionally distorting

(© 2020 The authors. This article is licensed under a Creative
Commons 3.0 licence, no derivative works, attribution, CC-
BY-ND.

location, organization or person names and even
sometimes ignoring low-frequency proper names
altogether (Koehn and Knowles, 2017).

This paper explores methods incorporating
named entity recognition (NER) into NMT with
the aim to improve NE translation. NER systems
are often adopted as an early annotation step
in many Natural Language Processing (NLP)
pipelines for applications such as question an-
swering and information retrieval. This work
explores an annotation method that integrates
named entities and inside—outside-beginning
(I0B) (Ramshaw and Marcus, 1999) tagging into
the neural network input with the use of source
factors. In our experiments, we focus on three NE
classes: organization, location and person, and use
the state-of-the-art encoder-decoder Transformer
network. We also investigate how the granularity
of NE class labels influences NE translation
quality and conclude that specific labels contribute
to the NE translation improvement. Further,
we execute an extensive evaluation of the MT
output assessing the influence of our annotation
method on NE translation. Our experiments on
English—German and English—Chinese show
that by just including different NE classes and
IOB tagging, we can increase the BLEU score by
around 1 point using the standard test set from
WMT2019 and achieve up to 12% increase in NE
translation rates over a strong baseline.

2 Related Work

Several research groups propose translating named
entities prior to the translation of the whole sen-
tence by an external named entity translation
model. Li et al., (2018a); Yan et al., (2018);
Wang et al.,, (2017) follow the ‘“tag-replace”
training method using an external character-level

Martins, Moniz, Fumega, Martins, Batista, Coheur, Parra, Trancoso, Turchi, Bisazza, Moorkens, Guerberof, Nurminen, Marg, Forcada (eds.)
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Belfast - Gi@ @ ants won thanks to Patri@ @ ck D@ @ w@ @ yer

Belfast, - Gi@ @3 ants3 wong thanksg tog Patri@ @, ck; D@@; w@ @ yer
Belfast; -0 Gi@ @ ants; wong thanksg tog Patri@ @ ck; D@ @, w@ @ yer;
Belfastg -o Gi@ @y ants; wong thanksg tog Patri@ @g ck; D@ @; w@ @ yery
<LOC> Belfast </LOC> - <ORG> Gi@@ ants </ORG> won thanks to <PER>

En | BPE only
En | fine-grained
En | coarse-grained
En | IOB tagging
En | Inline Ann.
(fine-grained) | Patri@@ ck D@@ w@ @ yer </PER>

Table 1: Different annotation configurations; i. fine-grained: (0) for a regular sub-word (default), (1) for NE class Person, (2)
for NE class Location, (3) for NE class Organization ii. coarse-grained: (0) default, (1) to denote a NE

sequence-to-sequence model to translate named
entities. Li et al. (2018b) explore inserting in-
line annotations into the data providing informa-
tion about named entity features. Such annotations
are inserted into the source sentence in form of
XML tags, consisting of XML boundary tags and
NE class labels.

Recently, researchers have shown the benefit
of explicitly encoding linguistic features, in form
of source factors, into NMT (Sennrich and Had-
dow, 2016; Garcia-Martinez et al., 2016). Dinu
et al. (2019) use source factors successfully to
enforce terminology. The work of Ugawa et
al. (2018) is similar to ours, in the way that they
also incorporate NE tags with the use of source
factors into the NMT model to improve named en-
tity translation. They, however, introduce a chunk-
level long short-term memory (LSTM) (Hochreiter
and Schmidhuber, 1997) layer over a word-level
LSTM layer into the encoder to better handle com-
pound named entities. Furthermore, they use a dif-
ferent network architecture (LSTM), and apply a
different annotation technique (IO tagging) than
we explore (IOB tagging). Finally, the work at
hand provides an extensive evaluation of NE qual-
ity translation (Section 5.2), including a human as-
sessment (Section 5.3).

3 NMT with NE tagging

We explore incorporating NE information as ad-
ditional parallel streams (source factors) to signal
NE occurrence in the fashion described in Sen-
nrich and Haddow (2016). Source factors provide
additional word-level information, are applied to
the source language only, and take form of supple-
mentary embeddings that are either added or con-
catenated to the word embeddings. This is illus-
trated with the following formula:

where @ € {>_, [/}, (-) denotes a matrix-vector
multiplication, E is a feature embedding matrix,
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x; is the ¢-th word from the source sentence, and F'
is a finite, arbitrary set of word features. While we
use a state-of-the-art encoder-decoder Transformer
network, our approach does not modify the stan-
dard NMT model architecture, thus can be applied
to any sequence-to-sequence NMT model.

Further, we also explore whether the NE class
granularity may influence translation quality and
help decrease word ambiguity. For this purpose,
we define a “fine-grained” case, where we use spe-
cific NE class labels (e.g. person, location, orga-
nization) and also a “coarse-grained” case, where
we use two different source factor values only:
(0) as default and (1) to denote a named entity
in a generic manner. Additionally, we investi-
gate whether inside—outside—beginning (I0B) tag-
ging (Ramshaw and Marcus, 1999) used to sig-
nalize where a NE begins and ends as a second
input feature may guide models to translate com-
pound named entities better. In IOB tagging, (B)
indicates the beginning, (I) the inside and (O) the
outside of a NE (a regular word or a sequence of
words).

We annotate source sentences with an external
NER system. Examples for the different annota-
tion strategies (that we experiment with) are pre-
sented in Table 1. Each sub-word is assigned an in-
dex denoting its corresponding source factor value.

As our goal resembles that of Li et al. (2018b),
we compare our approach against their inline an-
notation method with XML boundary tags. Li et
al. (2018b) use specific NE class labels, which cor-
respond to the “fine-grained” case in our work.
We refer to their approach as “Inline Ann. (fine-
grained)” and present this annotation method in
Table 1.

4 Experiments

4.1 Parallel data & pre-processing

We train NMT systems for English—German and
English—Chinese on data of the WMT2019 news



En—De En—Z7h
No. of sentences 2,146,644 2,128,234
No. of sentences with NE 1,082,873 1,153,545
Percentage ~ 50.44% ~ 53.95%
ORG labels 983,558 (53%) 1,325,462 (57%)
PER labels 223,309 (12%) 211,892 (9%)
LOC labels 639,304 (35%) 796,269 (34%)

Table 2: Occurrences of NE annotations in the training
datasets

translation task.! For English—German we use the
data from Europarl v9 and news commentary data
v14. For English—Chinese the models are trained
on news commentary v14 and UN Parallel Corpus
v1.0. The latter dataset is shortened to match the
size of the training dataset for English—German
by using the newest data from the end of the corpus
for training, see also Table 2.

As NE Recognition is an active research field
and the search for best recognition methods con-
tinues, the quality of NER systems may vary under
different research scenarios and domains (Goyal
et al., 2018). Incorrect NE annotation in the data
may influence the results of this work negatively.
Therefore, we focus on three well-researched NE
classes: Person, Location and Organization, limit-
ing, thus, the possibility of incorrect annotation.

We use spaCy Named Entity Recognition
(NER) system® to recognize named entities in
the source sentences. The ratio of sentences in
the training data with at least one named entity
occurrence (based on three NE classes) in the
source sentence amounts to 50.44% for En—De and
53.95% for En—Zh. Table 2 presents the details.

We tokenize the English and German corpora
using the spaCy Tokenizer®, and use the Open-
NMT Tokenizer* (mode aggressive) on the Chi-
nese side. Further, we perform a joint source
and target Byte-Pair encoding (BPE) (Sennrich et
al., 2016) for English—German and disjoint for
English—Chinese, both with 32,000 merge oper-
ations. For every source sentence in the training
data (after applying BPE), we generate two files
with source factors: i. marking named entities (ei-
ther the coarse-grained or the fine-grained case),
ii. marking IOB tagging. The baseline model is
trained with no external annotation.

Uhttp://www.statmt.org/wmt19/translation-task.html
“https://spacy.io/usage/linguistic-features\ #named-entities
3https://spaCy.io/api/tokenizer
*https://github.com/OpenNMT/Tokenizer
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Label type Variant IOB En—De En—Zh
fine-grained sum no 33.61 26.29
fine-grained concat8 yes 33.11 2645
fine-grained sum yes 33.07 26.26
coarse-grained concat8 yes 3290 26.08
coarse-grained ~ sum yes 3270  26.34
Baseline no 32.60 26.29
Inline Ann. (fine-grained) no 32.50  26.05

Table 3: BLEU scores on newstest2019 (WMT2019)

4.2 NMT architecture

We use the Sockeye machine translation frame-
work (Hieber et al., 2017) for our experiments
and train our models with a Transformer network
(Base) (Vaswani et al., 2017) with 6 encoding and
6 decoding layers all with 2048 hidden units. We
use word embeddings of size 512, dropout prob-
ability for multi-head attention of size 0.1, batch
size of 4096 tokens, a maximum sequence length
of 100 and source factor embedding of size 8 for
the concatenation case. Each model is trained on 1
GPU Tesla T4. Training finishes if there is no im-
provement for 32 consecutive checkpoints on the
validation data newstest2018 (validation data from
the WMT2019 news translation task).

5 Results

5.1 General translation quality

We perform the evaluation on the standard test
dataset newstest2019 from the WMT2019 news
translation task. It has identical content for En—De
and En—Zh and contains 1997 sentences, in which
63.95% of the sentences on the English side con-
tain at least one named entity. There are 2681
named entity occurrences; 908 belong to the la-
bel Location (34% of all NEs), 870 to the label
Person (32%) and 903 to the label Organization
(34%); annotated with spaCy NER. Each sentence
with named entity occurrence contains, on aver-
age, approx. 2 NEs. To assess the general transla-
tion quality, we calculate the BLEU score using the
evaluation script multi-bleu-detok.perl from Moses
(Koehn et al., 2007). We detokenize the MT out-
put with detokenizer.perl (Koehn et al., 2007) for
En-De and use OpenNMT detokenize function to
do the same for En—Zh.

Table 3 displays the results. Column “Label
type” denotes whether specific (“fine-grained”) or
generic (“coarse-grained”) NE labels are used; col-
umn “Variant” describes whether source factors
are added (“sum’) or concatenated (“‘concat”) to



En—De En—Zh

Label type Variant IOB LOC PER ORG Total Label type Variant IOB LOC PER ORG Total

fine-grained sum no 73.68 70.11 61.79 69.89 fine-grained sum no 41.67 20.07 31.62 24.41
fine-grained concat8 yes 72.87 71.96 63.41 70.67 fine-grained concat 8 yes 33.33 23.36 36.76 27.96
fine-grained sum yes 75.71 70.85 69.11 72.39 fine-grained sum yes 41.67 20.44 33.09 25.12
coarse-grained concat8 yes 74.09 71.22 62.60 70.67 coarse-grained concat 8 yes 33.33 22.63 33.09 26.30
coarse-grained ~ sum yes 75.30 71.22 65.04 71.61 coarse-grained ~ sum yes 33.33 21.90 38.97 27.73
Baseline no 74.09 71.59 60.16 70.36 Baseline no 33.33 18.98 35.29 24.64

Inline Ann. (fine-grained) no 70.45 67.16 61.79 67.39

Inline Ann. (fine-grained) no 33.33 19.71 34.56 24.88

Table 4: Results of the automatic in-depth analysis on ran-
dom300 dataset for En—-De with spaCy NER, NE match rate
in %

the word embeddings; column “IOB” describes
whether 10B tagging is used as a second source
factor stream.

Almost all models annotated with source fac-
tors show improvements w.r.t BLEU in compar-
ison to the baseline; with one En—Zh model be-
ing insignificantly worse. Overall, the fine-grained
model with source factors added and no use of IOB
tagging seems to perform best and achieves around
one BLEU point more than the baseline (for En—
De). As the BLEU score only assesses the qual-
ity of NE translation indirectly, we do not deem it
to be a reliable evaluation metric to assess the NE
translation quality. As named entities affect only
a small part of a sentence, we do not expect high
BLEU variations and continue with the in-depth
named entity analysis in the next section.

5.2 Automatic hit/miss NE evaluation

In this section we execute an automatic in-depth
analysis of NE translation quality with spaCy
(German models) and Stanford NER (Finkel et al.,
2005) (Chinese models). For this purpose, we
randomly select 100 sentences from newstest2019
containing at least one named entity for each of
the three classes (PER, LOC, ORG) on the English
side of the corpus, in total 300 sentences. We re-
fer to this dataset in later part of this work as ran-
dom300. We annotate the reference sentence with
an external NER system (spaCy or Stanford NER)
to find named entities and compare if they appear
in the hypothesis in the same form (string-based).
If yes, we define this case as a “hit”, otherwise as a
“miss” and calculate the result according to the NE
match rate formula: % Table 4 and Table 5
display the results. Column “Total” calculates the
accumulated NE match rate for three named entity
classes.

At first glance, we see that the result values
for En-De are significantly higher than for En—
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Table 5: Results of the automatic in-depth analysis on ran-
dom300 dataset for for En—Zh with Stanford NER, NE match
rate in %

Zh. We attribute this to the transliteration issues
which emerge while translating from English to
Chinese and, thus, occurring mismatch between
the reference and hypothesis translation. In gen-
eral, the baseline models show high performance
as a certain amount of NEs has already been seen
by the network in the training data. Furthermore,
we observe improvements in named entity trans-
lation for En-De and En—Zh among almost all
classes, showing that augmenting source sentences
with NE information leads to their improved trans-
lation. There is, however, no consistent improve-
ment in the models not using IOB tagging annota-
tion. Their total NE match rate values are lower
than that one of the baseline models. As such,
IOB tagging, indicating compound named enti-
ties, proves to be an important piece of informa-
tion for the NMT systems. Further, augmenting
the model with exact NE class labels (fine-grained
case) seems to achieve higher NE match rates in
comparison to the coarse-grained case. Addition-
ally, coarse-grained models perform better than the
baseline. This finding indicates that the mere in-
formation that a word is a NE proves to be use-
ful to the NMT system even if the class is not
clearly specified. Inline Annotation does not de-
liver promising results, contrary to the findings of
Li et al. (2018b), with the total NE match rate be-
low that one of the baseline system (En—De) or in-
significantly above (En—Zh).

Validation of the NE match rates After hav-
ing executed the automatic in-depth analysis with
spaCy NER, we wish to validate the results of the
En-De models with a second state-of-the-art NER
system: Stanford NER. The analysis is conducted
in an identical way as earlier and only the En—De
models are analyzed. At the point of writing this
paper, spaCy does not provide a Chinese model.
Table 6 presents the results. Column “Total” cal-



En—De

Label type Variant IOB LOC PER ORG Total
fine-grained sum no 76.25 76.14 60.00 73.70
fine-grained concat8 yes 75.62 77.16 64.62 74.88
fine-grained sum yes 80.00 78.68 69.23 76.78

75.62 77.66 67.69 75.36
77.50 76.65 69.23 76.48

78.75 76.65 60.00 74.64
73.75 74.11 60.00 71.80

coarse-grained concat 8
coarse-grained ~ sum

yes
yes

Baseline no
Inline Ann. (fine-grained) no

Table 6: Results of the automatic in-depth analysis on ran-
dom300 dataset for En—De with Stanford NER, NE match rate
in %

culates the accumulated NE match rate for three
named entity classes.

First, we observe that the overall NE match rates
are higher than in Table 4. We attribute this phe-
nomenon to the fact that Stanford NER recognizes
a different set of NEs in the reference sentences
than spaCy does. This, however, is not problematic
as we are interested in the variations in NE match
rates between the models. In general, there are no
differences in the results of the automatic in-depth
analysis, regardless whether spaCy or Stanford is
used to conduct it. All models trained with IOB
tags translate NEs more accurately than the base-
line model does. Again, fine-grained model trained
with IOB tags and source factors added to the word
embeddings achieves the highest NE match rate.
The model trained without IOB tags has a lower
NE match rate than the baseline re-confirming thus
the usefulness of the IOB tags.

5.3 Human hit/miss NE evaluation

As NER systems are prone to delivering inaccurate
results,” we also perform a human evaluation. It
consists in recognizing NEs in the reference trans-
lation, comparing them to the corresponding NE
translation in the MT output and calculating the NE
match rate on the random300 dataset. We compare
the baseline and the best model (highest total NE
match rate in Tables 4 and 5) for En—De and En—
Zh and refer to them as annotated models. If a
NE is in a different form in the hypothesis than the
reference proposes or a NE is transliterated into or
from Chinese, but its form is still grammatically
and semantically correct, its occurrence is counted
as correct. Human evaluation is executed by one
native speaker for each language pair. Table 7

3spaCy’s German model has 83% F1-Score (https:/spaCy.io/
models/de) with a warning that it may “perform inconsistently
on many genres”, the same holds for Stanford NER:
https://nlp.stanford.edu/projects/project-ner.shtml.
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En—De
Label type Variant IOB LOC PER ORG Total
yes 93.02 83.52 78.01 85.17
no 89.77 82.05 70.92 82.14
En—Zh
fine-grained concat 8 yes 73.85 67.04 64.27 68.05
Baseline no 71.43 61.90 57.35 63.24

fine-grained
Baseline

sum

Table 7: Results of the human in-depth evaluation on ran-
dom300 dataset, NE match rate in %

presents the results of the human hit/miss evalu-
ation. Column “Total” calculates the accumulated
NE match rate for three named entity classes.

The NE match rate for human hit/miss evalu-
ation is higher than for its automatic counterpart.
This is due to the fact that all false positives in the
reference and false negatives in the hypothesis are
eliminated. Most importantly, we can state that
the annotated models perform consistently better
than the baseline and, in fact, the incorporation of
external annotation in form of source factors into
the source sentence leads to an improvement in NE
translation. There is an increase of 3.67% in the to-
tal NE match rate value for En—De and 7.61% for
En-Zh. Furthermore, we observe the greatest NE
match rate improvement when translating organi-
zations’ names (+9.99% for En-De, and +12.07%
for En—Zh).

5.4 Accuracy of spaCy NER

While executing the human hit/miss NE evalua-
tion, we also annotated false positives and false
negatives in the reference, executing, thus, a qual-
ity check of spaCy NER on data from the news
domain (on random300 dataset, German model
only).  Precision value is 84.43% and recall
amounts to 85.93%. The above observation leads
to the conclusion that incorrect NE annotation may
occur relatively frequently in the training data. We
hypothesize that NE annotation with source fac-
tors may lead to better results if the training data is
fully correctly annotated.

5.5 Discussion

In this section we discuss our observations based
on the human evaluation and provide translation
examples. The use of source factors seems to
alleviate the problem of ignoring low-frequency
proper names as the annotated models appear to
consistently react to NE occurrence by produc-
ing a translation. The baseline, however, may ig-
nore more complex NEs, producing, thus, under-



Source Palin, 29, of Wasilla, Alaska, was arrested (...) according to a report released Saturday by Alaska State Troop-
ers.

Reference | Palin, 29, aus Wasilla, Alaska, wurde (...) verhaftet. Gegen ihn liegt bereits ein Bericht (...), so eine Meldung,
die am Samstag von den Alaska State Troopers verdtfentlicht wurde.

Annotated | Palin, 29 von Wasilla, Alaska, wurde (...) verhaftet (...), wie ein am Samstag von Alaska State Troopers
verdtfentlichter Bericht besagt.

Baseline Laut einem Bericht von Alaska, der Samstag veroffentlicht wurde, wurde Palin, 29 von Wasilla, Alaska, (...)
verhaftet (...).

Source Saipov, 30, allegedly used a Home Depot rental truck (...).

Reference | Saipov, 30, hat (...) angeblich einen Leihwagen von Home Depot (...) benutzt (...).

Annotated | Saipov, 30, soll einen Mietwagen aus dem Home Depot benutzt haben (...).

Baseline Saipov, 30, soll einen Home Department Depot Rental benutzt haben (...).

Source The pair’s business had been likened to Gwyneth Paltrow’s Goop brand.

Reference | Das Geschift der beiden war mit der Marke Goop von Gwyneth Paltrow verglichen worden.

Annotated | Das Geschift des Paares wurde mit der Marke Gop von Gwyneth Paltrow verglichen.

Baseline | Das Geschift des Paares wurde mit der Marke von Gwyneth Palop verglichen.

Source The Giants got an early two-goal lead through strikes from Patrick Dwyer and Francis Beauvillier.

Reference | Die Giants hatten durch Treffer von Patrick Dwyer und Francis Beauvillier eine friithe Zwei-Tore-Fiihrung.

Annotated | Die Giganten bekamen durch die Streiks von Patrick Dwyer und Franziskus Beauvillier ein friihes Ziel.

Baseline | Die Giganten erhielten durch die Streiks von Patrick Dwyer und Francis Beauvillier ein friihes Ziel.

Table 8: Translation examples: Comparison of the annotated model and baseline for En—-De

translation as in the Alaska State Troopers exam-
ple in Table 8. Furthermore, source factors seem
to guide the annotated models better (in compar-
ison to the baseline) to prevent over-translation,
as shown in the Home Depot example or miss-
translation (Gwyneth Paltrow’s Goop), both exam-
ples are in Table 8.

On the other hand, a frequent cause of errors in
the annotated models stems from the fact that or-
ganizations’ or persons’ names are translated ver-
batim instead of being kept in their original forms,
as in the Francis/Franziskus and Giants/Giganten
example in Table 8. This problem concerns both
the annotated model and the baseline. This be-
havior may not be desirable for persons’ names,
yet for organizations’ names the desired output is
dependent on the context and translation language
pairs.

6 Conclusion

Our work focused on establishing if annotating
named entities with the use of source factors leads
to their more accurate translation. We can state
that the general translation quality with the anno-
tated models improves (improvements in BLEU
score). Additionally, in-depth automatic and hu-
man named entity evaluation prove that the same
holds true for NE translation.

The accuracy of named entity annotation plays
a crucial role during the annotation of named en-
tities in the training data as well as during evalua-
tion (automatic hit/miss analysis). By establishing
spaCy’s F1-Score on random300 during the hu-
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man hit/miss analysis to amount to approx. 85%,
we conclude that the accuracy of any NER sys-
tem greatly influences the practicability of our ap-
proach. Therefore, the improvement of named en-
tity translation is closely related to the improve-
ment of NER systems.
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Abstract

We propose a unified multilingual model
for humor detection which can be trained
under a transfer learning framework. 1)
The model is built based on pre-trained
multilingual BERT, thereby is able to make
predictions on Chinese, Russian and Span-
ish corpora. 2) We step out from sin-
gle sentence classification and propose
sequence-pair prediction which considers
the inter-sentence relationship. 3) We pro-
pose the Sentence Discrepancy Prediction
(SDP) loss, aiming to measure the seman-
tic discrepancy of the sequence-pair, which
often appears in the setup and punchline
of a joke. Our method achieves two SoTA
and a second-place on three humor detec-
tion corpora in three languages (Russian,
Spanish and Chinese), and also improves
Fl1-score by 4%-6%, which demonstrates
its effectiveness in multilingual humor de-
tection tasks.

1 Introduction

Machine learning has been adopted in compu-
tational linguistic for understanding natural lan-
guages for several decades. With the development
of representation learning, rich semantics can be
encoded into the dense vectors named as embed-
ding, which significantly improves the ability of al-
gorithms in understanding fine-grained emotions,
for example, judging whether a sentence is hu-
morous, often formulated as a binary classification
problem. There can be many applications of hu-
mor detection such as language understanding in
(© 2020 The authors. This article is licensed under a Creative

Commons 3.0 licence, no derivative works, attribution, CC-
BY-ND.

¢ Qué tan peligroso es
tener piedras
en los rinones?

Rancel

Figure 1: An example from HAHA corpus shows that the
semantic discrepancy exists in a joke, where the urinated
stones is a disease in the left picture and is an action in the
right image, originated from the second and the third sentence
in the joke:

“-Doctor, my kidney hurts a lot

-Have you urinated stones?

-Yes doctor, I urinated stones, cars, trees, posts ...”

dialogue system and sentiment classification in so-
cial network platforms. In this paper, we focus on
humor detection based on deep learning methods.

Many algorithms has been used to solve these
problems such as conventional machine learning
algorithms like TF-IDF representation with SVM
classifier, or deep learning based like BERT (De-
vlin et al., 2019). However, most of these algo-
rithms are typically designed for universal tasks
but ignoring the difference (e.g. the paragraph
structure and semantic features) between humor
detection and other document classification tasks.

From a linguistic perspective, there are two crit-
ical features that often appear in jokes, which in-
spire us to model them explicitly and make specific
optimization for the task:

e Good setup and a punchline is the core of
many jokes. The setup can be considered as
the background of a story, and the punchline
is the surprise or the exception that is com-
monly contradict to intuition, which is the
trigger to make the reader laugh. The punch-
line often appears at the ends of the joke,
should be short enough, and often has signif-

Martins, Moniz, Fumega, Martins, Batista, Coheur, Parra, Trancoso, Turchi, Bisazza, Moorkens, Guerberof, Nurminen, Marg, Forcada (eds.)

Proceedings of the 22nd Annual Conference of the European Association for Machine Translation, p. 53—-59

Lisboa, Portugal, November 2020.



icant semantic discrepancy to the setup. The
discrepancy could be a turning or a reinforce-
ment. For example, “One of the most won-
derful things in life is to wake up and enjoy
a cuddle with somebody; unless you are in
prison.” or “A wife is like a hand grenade.
Take off the ring and say good bye to your
house.”, another example is shown in Figure.
1. Therefore, we may try to decompose the
joke to model the setup and the punchline sep-
arately.

The topic of the joke determines whether it is
funny for most of the people. Social events,
politics and daily life are mostly used as ma-
terials to write a joke, which means there are
usually commonsense in the joke and requires
prior knowledge to understand the conflict in
the punchline. Because jokes are often very
short, where items, roles and activities must
be widely understood by readers. Therefore, a
pre-trained language model is fairly appropri-
ate for this task as it could provide better lan-
guage representation learned from large cor-
pus.

By reviewing features of jokes, we can start our
study by making two assumptions. 1) Most of
jokes have punchline, and can be appropriately
modeled. 2) Most of punchlines have semantic dis-
crepancies with setup, and can be considered as a
factor in the determination of humorous.

Therefore, we propose a method for humor de-
tection which can be described as three stages. 1)
Data augmentation with paragraph decomposition.
2) Fine-tuning BERT on the task specific labels
with the help of Sentence Discrepancy Prediction
(SDP). 3) Making predictions based on decom-
posed paragraphs. The contribution of our work
can be summarized as following:

e We propose a data augmentation method
named paragraph decomposition which is
specifically appropriate for humor detection
tasks.

e We propose a method to explicitly detect
the semantic discrepancy in sentence pairs,
named SDP.

The proposed method is evaluated on three
languages, which demonstrate its effective-
ness in multilingual scenarios.
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Figure 2: The architecture of our model, where two types of
inputs are from three languages. The first type is normal se-
quence without being decomposed, and is only optimized by a
classification/regression loss. The second type is decomposed
sequence with additional inter sentence discrepancy loss as
well as the classification/regression loss. All forms of inputs
are encoded with a unified model based on the multilingual
BERT.

2 Related Work

In recent years, many studies on humor detection
have been published. Some researchers focuses on
employing state-of-the-art studies like BERT (De-
vlin et al., 2019) to make better predictions, others
attempts to improve simple networks like LSTM
(Hochreiter and Schmidhuber, 1996) and CNN
(Krizhevsky et al., 2012) or even conventional ma-
chine learning algorithms to compete with deep
neural networks. At the same time, researchers
have made available several high-quality datasets
in different languages which significant help inves-
tigations on this area.

(Weller and Seppi, 2019) propose a BERT based
humor detection model, fine-tuned on corpus col-
lected from Reddit, Short Jokes and Pun of the
Day (Yang et al., 2015), which achieves significant
improvement on the performance comparing with
many CNN based models.

(Chiruzzo et al., 2019) summaries a series of
works from teams who build models and con-
duct experiments on HAHA dataset in the Iber-
LEF 2019. (Ismailov, 2019) propose the method
based on a pre-trained multilingual BERT, and fur-
ther pre-train it on the domain dataset. Finally, the
model is fine-tuned with task specific labels. Apart
from that, they combine the prediction of Naive
Bayes with TF-IDF and NN outputs with logistic



regression to produce the final prediction, which
achieves the best result in the HAHA 2019 chal-
lenge. Other teams also follows the framework
by combining deep pre-trained models with con-
ventional algorithms to acquire competitive pre-
dictions.

(Blinov et al., 2019; Chiruzzo et al., 2019;
Yang et al., 2015) release large corpus in different
languages like Russian and Spanish, which give
chances for researchers to build and evaluate their
models on more diverse datasets. At the same time,
they evaluate their datasets with proposed mod-
els and make detailed analysis which successfully
demonstrates the good quality of the corpus.

By reviewing previous works and analyzing
their results, we choose to follow a similar pipeline
to start our work based on the pre-trained multi-
lingual BERT and evaluate our method on three
datasets in different languages aiming to inves-
tigate whether the feature of punchline exists in
jokes from different cultures and can be detected
with the model.

3 Approach

In this section, we introduce details of our method
in the three stages which is shown in Figure 2, and
we also discuss the advantages of our method com-
paring with others.

3.1 Paragraph Decomposition

We have briefly introduced the feature of a joke
in the introduction section and pointed out the im-
portance of the punchline. However, there is no
publicly available large dataset with exact labeled
location of the punchline sentence, which stops us
from decomposing the joke into the setup and the
punchline directly. Therefore, we apply two ways
to decompose a joke into a sentence pair.

e Decomposing from the middle. The first
method is the simplest way, which inserts a
[SEP] token in the middle of the paragraph
without considering real punctuations of the
paragraph. We use PDy; to represent such
method.

Decomposing from the last sentence. The
second way is to insert the [SEP] before the
last sentence of the paragraph. We use PDy,
to represent such method.

The major purpose of decomposing paragraphs
into segment pairs is to convert the problem of
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a single document classification problem to para-
graph pair classification. Two benefits can be
achieved. 1) Tasks which heavily depend on under-
standing the semantic relationship between con-
secutive segments can be benefit from PD, such
as natural language inference and humor detec-
tion. 2) From the experiment, we find that treat-
ing a long sequence (e.g. more than 300 tokens)
as a single paragraph (without [SEP] in the mid-
dle) will dramatically drop the performance of
BERT in a humor classification task; however, by
adding [SEP] at the appropriate position, the per-
formance can be optimized. We assume that in the
pre-training of Next Sentence Prediction (NSP) in
BERT, the [SEP] could affect the self-attention to
attend tokens in the pre-/post-segment separately,
which somewhat decreases the context length.

3.2 Sentence Discrepancy Prediction

As already stated, the punchline of a joke often has
semantic discrepancy to the setup. Therefore, we
explicitly model it by using original classification
label as the SDP label, which means paragraphs
labeled as humours (positive sample marked as 1)
are considered to have a setup and a punchline with
large semantic discrepancy. On the other hand, a
negative sample (marked as -1) is considered to
have no setup and punchline thus has no discrep-
ancy between any sentences or sub-sentences in-
side the paragraph.

Specifically, we define v; ¢1s and v; s as the rep-
resentation of the sentence pair from joke ¢, which
can be obtained with the representation of [CLS]
at the beginning and the [SEP] of the decomposed
position, respectively.

Then, we choose to use the cosine as the scoring
function to measure the semantic similarity of v
and vgep. denoted as:

si = c0s(g(vieis), 9(Visep)); (1
where g is a linear transformation.
Finally, we define the SDP loss as Lspp:
1 N
Lspp = 77 > i+ i), 2

(2

where y € {—1, 1} is the label comes from the bi-
nary classification task but scaled into -1 to 1. The
purpose of this loss is to leverage the vector of two
segments in the semantic space to the opposite di-
rection if the paragraph is a joke (i.e. the paragraph



has a punchline thus the angle of the pre and the
post segment should be large), and to the same di-
rection (i.e. small angle for a non-humorous para-
graph) if there is no discrepancy.

3.3 Fine-Tuning

Instead of simply fine-tuning the model with a sin-
gle loss computed from the predicted logits and
ground-truth, we fine-tune the model with two
tasks sharing same labels but providing different
contributions. The first loss comes from the con-
ventional classification task, and the second one is
from the sentence discrepancy prediction.

We define a task specific prediction heads im-
plemented by a linear transformation, denoted as
f; the input of the prediction head is the represen-
tation of the [CLS] token, represented as vcs; ¢
denotes the predicted logits. More formally:

g:f(UCISQGf)’ 3)

Weighted cross-entropy is used as the loss func-
tion to deal with the imbalance of the datasets; the
label weights are calculated as follows:

N

S NxC’ “4)

We
where N is the number of samples in the training
set; C' is the number of classes (e.g. 2 for binary
classification) and N, is the number of samples
classified as c. Therefore, the loss function can be
rewritten as:

N C©
1
Lcis = N Z zc:wcyz;c log P(yic|zi) (5)

To train the model with two tasks, we define
L(0) as:
L(0) = Lcis + ALspp (6)

where A is the factor to scale the SDP loss. Note
that the parameters of BERT aren’t frozen and can
be updated during the fine-tuning.

3.4 Segment Ensemble

Although the paragraph decomposition could
change the view of the model to encode the para-
graph, it might also introduce noise and cause the
damage on the semantic representation. There-
fore, we use another BERT, fine-tuned on the un-
decomposed corpus to produce vanilla prediction,
and ensemble it with the decomposed prediction.
An average pooling is performed on the logits of
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Train Dev Test

FUN samples | 246,415 5,000 61,794
tokens 17.69 17.59 18.17

(RU) positive | 50.00% 50.48%  50.0%
samples | 22,000 2,000 6,000
HAHA tokens 15.48 15.56 16.35

(ES) positive | 38.59% 38.20% 39.03%
CCL samples | 11,494 1,642 3,284
tokens 38.33 39.15 38.71

(ZH) positive | 70.34% 69.49% 70.34%

Table 1: Details about three datasets. ZH, RU and ES are the
abbreviation of Chinese, Russian and Spanish respectively.
Tokens are the average tokens per line in specific subset. Pos-
itives are the proportion of the positive samples in specific
subset, which indicates that HAHA and CCL is relatively im-
balanced comparing with FUN.

two models. Note that the vanilla fine-tuned BERT
is also considered as the baseline model; we use
SE to represent segment ensemble for simplicity.

4 Experiments

In this section, we introduce the details of the
datasets, as well as the experimental setup.

4.1 Data

We perform experiments on three following
datasets organized in three languages respectively.
The detail can be found in Table 1

411 CCL

This dataset is published in the CCL2019 Chi-
nese Humor Detection Competition!, which has
two subsets where the first one is composed of
21,552 samples for binary classification. 21,885
jokes in the second subsets are labeled in three lev-
els and can be formulated as a tri-class classifica-
tion problem. However, we only perform exper-
iments on the first subsets for compatibility with
other two datasets. Note that the golden labels of
development set and test set are not released, and
can only be assessed by the competition organizer,
therefore, we randomly split a dev and test set from
the original train set for convenient. The experi-
mental results reported later is from the test set on
our own splitting, and we also present the score
on the leaderboard of our model. Overlength jokes
are removed from the training set and are trimmed
to 512 tokens during validation. Macro F1-score is
used as the evaluation metric.

"https://github.com/DUTIR-Emotion-Group/CCL2019-
Chinese-Humor-Computation



Method CCL FUN HAHA
Random (baseline) 0.5844 0.4991 04314
Fasttext (baseline) 0.8267 0.7982 0.7302
(2019) QingBoAlI (ensemble) 0.9488 - -

(2019) gurs (ensemble) 0.8968 - -

(2019) SanQunWuDui (ensemble)  0.8683 - -

SVM - 0.798 -

(2019) ULMFun - 0.9070 -
(2019) 4dilism (ensemble) - - 0.821
(2019)Kevin & Hiromi (ensemble) - - 0.816
(2019)pfarzin (ensemble) - - 0.810
BERT (baseline) 0.8468 0.9022 0.7896
BERT-SDP (PDy,) 0.8635 0.9115 0.7975
BERT-SDP (PDy) 0.8692 0.9126 0.8120
BERT-SDP (PDy+SE) 0.90172"¢  0.9138'st  0.8217'¢!

Table 2: Our method achieves top 2 result in all three datasets comparing with both ensemble and single models published in
2019, which demonstrates the effectiveness of our approach in scenarios like multilingual and imbalanced data. Note that the
second group are from the leaderboard of CCL competition which we participated in and achieved the second place. The third
group is the result published in original FUN (Blinov et al., 2019). The fourth group is from the report of HAHA at IberLEF
2019 (Chiruzzo et al., 2019), which we didn’t participate in and is shown for comparison purposes.

4.1.2 FUN

FUN is proposed in (Blinov et al., 2019), mainly
collected from several Russian social network
websites; it only contains binary labels (i.e. classi-
fying whether a paragraph is humorous). Note that
FUN is the largest dataset in our experiment, con-
sisting of more than 313,210 samples, where 1877
are manually labeled and considered as golden
truth which is not used for evaluation due to its
limited size. 5000 samples are further split as a
dev set from the train set. Macro F1-score is the
evaluation metric.

4.1.3 HAHA

HAHA (Chiruzzo et al., 2019) is a Spanish cor-
pus collected from twitter for the competition of
IberLEF 2019. There are 30,000 samples where
11,595 tweets are labeled as humorous (38.7%).
The humorous tweets are further annotated with
real number scores in the range of 1 to 5. We only
do the first task (i.e. binary classification) aiming
to make comparable settings among three datasets
with macro Fl-score. In addition, we further split
the train set into train and dev for tuning hyper-
parameters.

4.2 Experimental Setup

The BERT model we used is implemented with
transformers (Wolf et al., 2019). All three datasets
are encoded with BERT-base-multilingual-cased.

We use pytorch? to implement the classification
head f and the SDP head ¢ after the BERT en-
coder. The model is trained on 4 Titan Xp GPUs
where each has 12 GB memory, the batch size is
set to 96. We use the AdamW (Loshchilov and
Hutter, 2019) as the optimizer with the peak learn-
ing rate of le-4.

We perform experiment on the BERT baseline
as well as 3 variants of our approaches, including
two decomposition strategies and the segment en-
semble. Besides the baseline BERT, all 3 variants
use the SDP loss with A = 0.1.

S5 Analysis

The experimental results is shown in Table 2,
which is separated into three groups. The first
group contains baseline methods including a ran-
dom predictor and a fasttext (Bojanowski et al.,
2016) model. The second group are SOTA meth-
ods in CCL 2019 competition, where the second
place is obtained by our ensemble model. The
third group is published in original FUN (Blinov et
al., 2019), where SVM is their baseline and ULM-
Fun is a fine-tuned ULMFiT (Howard and Ruder,
2018). The fourth group are results published in
the report of IberLEF 2019 (Chiruzzo et al., 2019),
which we didn’t participate in, and is shown for
comparison purposes. The last group are the ab-

Zhttps://pytorch.org/
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TR R AR HIRABATTA T
[SEP] “Efr L,

AT IEAEBARRRET LA -
R A HIRAB TR -
SEPR L,

AT T IEAEBORBEERLY - [SEP]
Cats seem to be just sharpening
their claws. [SEP] In fact,
they are exercising leg muscles.
Cats seem to be just sharpening
their claws. In fact,
they are exercising leg muscles. [SEP]

71 0.61

0.55

EN 0.61

0.55

Table 3: An example shows that correctly decomposing the
joke could encourage the model to produce higher probability
for the correct class.

lation study evaluated on a BERT baseline and 3
variants of our approach. Note that the score gap
on the CCL column in the second and last group is
caused by the different test set. We can see all of
them have the improvements of performance com-
paring with baselines.

We find a representative case from CCL dataset,
which is shown in Table.3. We can see that de-
composing the joke from the start of the second
sentence achieves higher probability and the sec-
ond sentence is actually the punchline of this joke.

Although the score of HAHA is acceptable,
we find some cases showing that the tweets pub-
lished in HAHA is relatively unclean, with noisy
characters like hashtags or being barely readable
even by human, which also happens in FUN. As
shown in Table. 4, repeatedly appeared “JA” and
hashtags may corrupt the paragraph decomposi-
tion algorithm and produce unreasonable para-
graph pairs. At the same time, BERT is not pre-
trained on tweets or corpus from social networks
which means the token representations of FUN and
HAHA is insufficient to encode correct semantics.

6 Conclusion

We propose the SDP and paragraph decomposition
to for humor detection, by linking the classifica-
tion label to the inter-sentence discrepancy predic-
tion. Our proposed method achieves competitive
performance on three dataset with different lan-
guages. Although our SDP algorithm has achieved
great performance on humor detection tasks, how
to generalize it to other NLP tasks remains as our
future work.
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;Tu? ;Gustarme?
JAJAJAJAJAJAJAJAJA
JAJAJAJAJAJAJAJAJA

JAJAJAJAJAJAJAJAJAJA
JA Tengo que disimular un poco mas.
#20CosasQueHacerAntesDeMorir:
Ensefiarles la diferencia
entre: -Hay de haber -Ahf{ de lugar -Ay
de exclamar - Ai se eu te pego.

Rt con el pollo asado #PremiosFenix
(Your? ;Like me?
JAJAJAJAJAJAJAJAJA
JAJAJAJAJAJAJAJAJA
JAJAJAJAJAJAJAJAJAJA
JA T have to hide a little more.
#20Things to do before you die:
Teach them the difference
between: -There is a place -Ay
to exclaim - I hit you there.

Rt with roast chicken #PremiosFenix

ES

EN

Table 4: An example shows that uncleaned tweets from
HAHA could dramatically corrupt the performance of para-
graph decomposition and BERT encoder
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Abstract

Corpus-based approaches to machine trans-
lation (MT) have difficulties when the
amount of parallel corpora to use for train-
ing is scarce, especially if the languages
involved in the translation are highly in-
flected. This problem can be addressed
from different perspectives, including data
augmentation, transfer learning, and the use
of additional resources, such as those used
in rule-based MT (RBMT). This paper fo-
cuses on the hybridisation of RBMT and
neural MT (NMT) for the Breton—French
under-resourced language pair in an attempt
to study to what extent the RBMT resources
help improve the translation quality of the
NMT system. We combine both translation
approaches in a multi-source NMT archi-
tecture and find out that, even though the
RBMT system has a low performance ac-
cording to automatic evaluation metrics, us-
ing it leads to improved translation quality.

1 Introduction

Corpus-based approaches to machine translation
(MT), such as neural MT (NMT), struggle when
the size of the available parallel corpora for a given
language pair is scarce (Koehn and Knowles, 2017).
Even though the problem can be partially mitigated
with accurate hyper-parameter tuning (Sennrich and
Zhang, 2019), taking advantage of additional re-
sources can help to further improve the quality of
the system.

Monolingual texts in both languages can be lever-
aged with the help of back-translation (Sennrich et
al., 2016a; Hoang et al., 2018) to generate synthetic
© 2020 The authors. This article is licensed under a Creative

Commons 3.0 licence, no derivative works, attribution, CC-
BY-ND.

parallel corpora. It is also possible to use only
monolingual corpora and follow an unsupervised
NMT approach (Artetxe et al., 2018). Parallel cor-
pora from related language pairs can also be lever-
aged thanks to multilingual NMT (Johnson et al.,
2017) and other forms of transfer learning (Kocmi
and Bojar, 2018).

In addition to the use of corpora, linguistic re-
sources can also be used to improve NMT. If mor-
phological analysers or syntactic parsers are avail-
able, they can be used to build a richer represen-
tation of the words being translated (Sennrich and
Haddow, 2016; Nadejde et al., 2017). Even full
rule-based MT (RBMT) systems can be combined
with NMT in order to build hybrid systems (Huang
et al., 2020).

In this work, we focus on an under-resourced lan-
guage pair: Breton—French, and study mechanisms
to build a hybrid system by combining NMT with
the Breton—French system built with the Apertium
RBMT platform (Forcada et al., 2011).

We aim at producing sentences that combine
knowledge extracted from the parallel corpus and
from the RBMT system. Hence, we go beyond
approaches that simply choose the best system (ei-
ther RBMT or NMT) for each input sentence (see
below). We use multi-source NMT and formalise
the problem of combining both sources of knowl-
edge as an automatic post-editing (Chatterjee et al.,
2018) problem. In this way, we are able to explore
different ways of generating the RBMT output, us-
ing different resources, to study which resources
are more useful for the hybrid approach.

The rest of the paper is organised as follows.
The remainder of this section lists previous works
related to the hybridisation of RBMT and corpus-
based systems, including approaches for integrating
external bilingual segments into NMT. Section 2
then explains the resources available for Breton—

Martins, Moniz, Fumega, Martins, Batista, Coheur, Parra, Trancoso, Turchi, Bisazza, Moorkens, Guerberof, Nurminen, Marg, Forcada (eds.)
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French and the challenges of translating between
Breton and French. Section 3 describes the hybrid
architecture chosen. Section 4 presents the experi-
ments carried out and discusses the results obtained.
The paper ends with some concluding remarks.

Hybrid systems combining rule-based and
corpus-based approaches. The creation of hy-
brid systems combining RBMT and statistical MT
(SMT) has been explored by many authors. The
most relevant approach for this work (Tyers, 2009)
enlarged the training corpus of an SMT system
with 116,500 sentence pairs made up of all pos-
sible inflected Breton forms and their inflected
French translations as present in an earlier version
of the Apertium Breton—French system we are us-
ing. Schwenk et al. (2009) followed a similar ap-
proach for other language pairs. More sophisticated
approaches (Eisele et al., 2008; Enache et al., 2012;
Séanchez-Cartagena et al., 2016) involve modifying
the SMT architecture.

Concerning the combination of RBMT and NMT,
a relevant line of research involves choosing the
best output (either RBMT or NMT) for each source
sentence. For instance, Huang et al. (2020) propose
training an automatic classifier for this task and use
some features to help predict how difficult is the
source sentence for each system: for instance, the
degree of morphological and syntactic ambiguity is
useful to estimate how difficult is the sentence for
the RBMT system, while the token frequency on the
training corpus can help to assess how difficult it is
for the NMT system. Similarly, Singh et al. (2019)
use confidence scores computed for each system
to choose the best alternative for each source sen-
tence. Torregrosa et al. (2019) experimented with
the integration of RBMT bilingual dictionaries and
syntactic parsers into NMT without success.

Finally, the multi-source architecture studied
in this paper has been preliminary explored
by Sanchez-Cartagena et al. (2019). The main
differences with this work are: i) they did not
study the impact of the different components of
the RBMT system; and ii) they did not perform a
hyper-parameter search, which could explain the
poor performance of their transformer systems. In
addition, we conduct an automatic analysis of the
errors produced by our hybrid approach.

Integration of bilingual segments into NMT.
The integration of bilingual segments, which could
be produced by an RBMT system, into an NMT sys-
tem has received some attention recently. One of
the first approaches (Arthur et al., 2016), which can
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only be applied to single-token bilingual segments,
used the attention weights of a recurrent attentional
encoder—decoder (Bahdanau et al., 2015) model to
decide the target language (TL) word translation
probabilities that needed to be boosted in the fi-
nal softmax layer. Tang et al. (2016) and Wang et
al. (2017) relied on a phrase memory for NMT that
could contain multiple-token bilingual segments.
They modelled decoding as a mixture of two pro-
cesses: generating a word with the standard NMT
model, or introducing a phrase from the phrase
memory. Zhang et al. (2017) formalised the strategy
of Tang et al. (2016) as a posterior regularization
approach (Ganchev et al., 2010). Feng et al. (2018)
designed a phrase attention mechanism that could
be used either without additional supervision or
with an external bilingual lexicon. Another related
line of research modifies the beam search algorithm
to meet some terminological constraints (Chatterjee
et al., 2017; Post and Vilar, 2018).

2 Breton—-French machine translation

The Breton language (Brezhoneg in Breton) is a
Celtic language of the Brittonic group that is spo-
ken in the west of Brittany (Breizh Izel or “Lower
Brittany”) in France, and the main language with
which it has contact is French, the only official lan-
guage; in fact, Breton, spoken by about 200,000
people, has virtually no legal recognition in France.

Resources for Breton: Programs like Firefox,
Google applications and some Microsoft programs
have been localized and there is a 70,000-page Bre-
ton Wikipedia. There is little software dedicated
to Breton; most of it free/open-source, such as
the Apertium MT system and the LanguageTool
spelling and grammar checker. This software and
services such as the Freelang online dictionary! are
based on linguistic resources such as morphological
analyzers, monolingual and bilingual dictionaries.
As for bilingual text corpora, today OPUS? con-
tains about 400,000 sentence pairs, most of them
very specialized, in the field of computer science.

The Apertium Breton-French system: The
Apertium platform® contains an MT system de-
signed to allow French-speaking readers to access
written Breton content (gisting).* This MT system

'nttps://www.freelang.com/enligne/breton.
php

nttp://opus.nlpl.eu
Shttp://www.apertium.org

“Developers deliberately chose not develop French—Breton MT,
deeming it too risky in terms of the socio-linguistic situation,
as users would assume the machine-translated Breton to be



(Tyers, 2010), the only one in the world for Bre-
ton, was released in May 2009 as the result of the
joint efforts of the Ofis ar Brezhoneg,’ the Spanish
company Prompsit Language Engineering, and the
Universitat d’Alacant and is based on the Apertium
platform (Forcada et al., 2011). Dictionary develop-
ment started with the free dictionaries for Breton in
Lexilogos.® Development of the Apertium Breton—
French MT system slowly continues. The quality of
the French generated is not suitable for publishing,
but may be used to get a rough idea of the meaning
of a Breton text.

Automatic inference of translation rules for
Breton—-French: There have been attempts to im-
prove the Apertium Breton—French system in an un-
supervised way. In particular, Sdnchez-Cartagena et
al. (2015) proposed an algorithm for the automatic
inference of shallow-transfer rules from small par-
allel corpora and existing RBMT dictionaries.The
result of applying the algorithm to the Apertium
Breton—French system using just the parallel data
prepared by Tyers (2009) was a set of rules whose
quality, as measured by automatic MT evaluation
metrics, was close to the existing hand-crafted ones.

3 System architecture

We propose combining the explicit linguistic knowl-
edge encoded in the Breton—French Apertium sys-
tem with the implicit knowledge encoded in a par-
allel corpus by means of multi-source NMT (Zoph
and Knight, 2016). Given a source-language (SL)
sentence to be translated, our proposed architec-
ture proceeds as follows (see Figure 1): First, the
SL sentence is translated with the RBMT system;
then the original SL sentence and its RBMT trans-
lation are passed as inputs to the multi-source NMT
system, which produces the final translation. At
training time, the SL side of the parallel sentences
in the training corpus is translated with Apertium
to obtain a “trilingual” parallel corpus. As it is
common practice, the multi-source system works
on byte-pair-encoding (BPE) sub-word units (Sen-
nrich et al., 2016b) obtained from both inputs and
the output together.

With this architecture, we expect the NMT sys-
tem to learn to translate from the SL text with help
from the RBMT output. It could also be seen the
other way round: the NMT system postedits the

good and use it improperly as if it were correct (Jakez, 2009
personal communication).

SNow Ofis Publik ar Brezhoneg
*https://www.lexilogos.com/breton_
dictionnaire.htm
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Figure 1: Multi-source NMT approach followed to integrate
the linguistic knowledge encoded in the Apertium Breton—
French RBMT system.

RBMT output with the help of the SL sentence. In
fact, this architecture has been successfully applied
for automatic post-editing (Junczys-Dowmunt and
Grundkiewicz, 2018).

The Apertium architecture as well as the multi-
source NMT architecture used in our experiments
are described in the remainder of this section.

3.1 Apertium rule-based machine translation

Apertium is a free/open-source RBMT system that
follows a shallow-transfer architecture. What fol-
lows is brief description of its modules; for a com-
plete description of the system we refer the reader
to the work by Forcada et al. (2011).

o A morphological analyser segments the text
in surface forms (words, or, where detected,
multi-word lexical units) and delivers, for each
one, one or more lexical forms consisting of
lemma, lexical category and morphological
inflection information.

e A part-of-speech tagger, which combines a
constraint grammar (Karlsson et al., 1995)
with a first-order hidden Markov model (Cut-
ting et al., 1992), selects the most likely lexical
form corresponding to an ambiguous surface
form.

o A lexical transfer module which reads each
SL lexical form and delivers the corresponding
TL lexical form by looking it up in a bilingual
dictionary.

o A shallow structural transfer module that per-
forms syntactic operations on the sequence of
lexical forms to improve the grammaticality
of the output.’

e A morphological generator which delivers a
TL surface form for each TL lexical form, by
suitably inflecting it.

"This shallow model does not rely on a full parse tree of the
whole sentence and, therefore, RBMT systems that perform

full syntactic analysis are more effective than Apertium when
dealing, for instance, with long-range reorderings.



o A post-generator which performs inter-word
orthographic operations: contractions, elisions
marked by apostrophes, etc.®?

3.2 Multi-source neural machine translation

We experimented with the transformer (Vaswani
et al., 2017) and the recurrent attentional encoder—
decoder (Bahdanau et al., 2015, hereinafter recur-
rent) NMT architectures. In both cases, we fol-
lowed the multi-source architectures implemented
in the Marian toolkit (Junczys-Dowmunt et al.,
2018), which are described next.

Our recurrent NMT systems follow the same
architecture as Nematus (Sennrich et al., 2017b),
namely a bidirectional gated recurrent unit (GRU)
encoder, a conditional GRU decoder with atten-
tion (Miceli Barone et al., 2017, Sec. 4.2) and a
deep output that combines the context vector, the
recurrent hidden state and the embedding of the
previous symbol. The multi-source recurrent NMT
system contains two encoders (one for each input)
which do not share parameters. The modifications
in the decoder that allow it to accommodate the two
encoders are the following:

e The initial state of the decoder is obtained after
concatenating the averaged encoder states of
the two input sequences.

e The conditional GRU (cGRU) unit with atten-
tion in the decoder is replaced by a doubly-
attentive cGRU cell (Calixto et al., 2017) fea-
turing two independent attention mechanisms.

e The context vector used in the deep output is
replaced by the concatenation of the context
vectors of the two inputs.

For further details, the reader is referred to Junczys-
Dowmunt and Grundkiewicz (2017).

Our transformer models follow the architecture
proposed by Vaswani et al. (2017). A transformer
model contains an encoder and a decoder. The en-
coder is made of stacked layers, each containing
a self-attention unit and a feed-forward unit. The
decoder is also made of stacked layers, each con-
taining a self-attention unit, an encoder—decoder
attention unit and feed-forward unit. The multi-
source transformer systems contain two encoders
and two encoder—decoder attention units in each
decoder layer. This transformer multi-source archi-
tecture was also used in the winning submission
to the 2018 WMT automatic post-editing shared
task (Chatterjee et al., 2018). For further details, the
reader is referred to Junczys-Dowmunt and Grund-
kiewicz (2018).

8In French: & + lequel — auquel; de + hotels — d’hétels, etc.
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Corpus ‘ # sent. ‘ # br tokens ‘ # fr tokens

train | 139,489 | 1,096,311 | 1,116,100
dev 2,000 25,291 24,835
test 3,000 37,054 36,346

Table 1: Number of parallel sentences and tokens in Breton
and French for the corpora used for train/dev/test corpora.

4 Experiments and results

For the experiments we used the following corpora
available at OPUS:° Tatoeba, GNOME, OfisPub-
lik, KDE4, wikimedia, Ubuntu and OpenSubtitles.
For development and testing we used the same por-
tions of the OfisPublik corpus used by Sanchez-
Cartagena et al. (2015), the rest of corpora, after
de-duplication, were used for training. Table 1 re-
ports the amount of parallel sentences and tokens
in each language for the training, development, and
test corpora.

Concerning Apertium, we used the Breton—
French data available at https://github.
com/apertium/apertium-br-fr. In ad-
dition to the shallow-transfer rules included in
these linguistic data, we also experimented with
shallow-transfer rules automatically inferred from
the portion of the OfisPublik corpus included in
the training corpus using the algorithm by Sédnchez-
Cartagena et al. (2015).

In order to determine the appropriate amount
of BPE operations and hyper-parameter values to
be used for the two models we proceed as fol-
lows: First we tried with 5,000, 10,000, 20,000,
and 30,000 BPE operations with a baseline sys-
tem not using any Apertium data. When doing so
the rest of hyper-parameters were set to the values
recommended by Sennrich et al. (2017a) for the
recurrent model and by Vaswani et al. (2017) for
the base transformer model, respectively, except
for the model size which was set to 512. Training
stopped after 5 validations without any perplexity
improvement on the development corpus; valida-
tions were performed every 1,000 mini-batches;
each minibatch contained 8,000 tokens. The best
results were obtained with 20,000 BPE operations
for the recurrent model and 5,000 for the trans-
former. We then performed a grid search to find the
appropriate hyper-parameters for each model. The
hyper-parameters tried for the recurrent model are:

e Embedding sizes in {512, 256, 128}. For each
embedding size the hidden size was set to
twice the size of the embeddings.

*http://opus.nlpl.eu



e Encoder and decoder cell depthsin {1, 2,4, 8}.
We used the same value for both so as not to
explore the Cartesian product. Cell depth is
defined as the number of GRU transitions in
the deep transition architecture proposed by
Miceli Barone et al. (2017, Sec. 4.2).

The hyper-parameters tried for the transformer
model are:

e Attention heads in {2, 4, 8}.

e Model size in {512,256, 128}.

e Encoder and decoder layers in {2,4,6}. As
before, we used the same value for both to
avoid exploring the Cartesian product.

The best results for the recurrent model were ob-
tained with an embedding size of 512 and encoder
and decoder cell depths of 2. For the transformer,
the best results were obtained with 4 attention
heads, model size of 512 and 4 encoder and de-
coder layers. These hyper-parameters are the ones
used for the rest of experiments reported.

Table 2 provides the BLEU and chrF2++ scores
for the reference systems and for the different ways
of exploiting the linguistic resources in Apertium,
as explained next. For the reference NMT systems
and the different multi-source NMT configurations
we have tried, the table reports the mean and stan-
dard deviation of the scores obtained after three
different training executions.

An explanation of the different reference systems
follows:

e Baseline NMT system (base NMT) trained
solely on the training corpus (see Table 1).

e Baseline NMT system trained on a concatena-
tion of the training corpus and the entries in the
Breton—French bilingual dictionary of Aper-
tium (base+dic NMT). Tyers (2009) explains
how all the inflected bilingual entries can be
obtained from the Apertium dictionaries; some
of them may have more than one translation
equivalent while others may be multiword en-
tries. The amount of bilingual entries obtained
from the current version is 125,829, of which
57 have more than one translation equivalent
and 2,228 are multiword entries.

e Apertium with hand-crafted rules (RBMT man.
rules): the full RBMT system. The linguis-
tic resources used by this system are: mor-
phological analyser for Breton, morphological
generator for French, part-of-speech tagger of
Breton, Breton—French bilingual dictionary of
lemmas and shallow structural transfer rules.
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e Apertium with automatically-inferred rules
(RBMT auto rules). Same as above but us-
ing the shallow structural transfer rules auto-
matically inferred by Sdnchez-Cartagena et
al. (2015), instead of using hand-crafted rules.

e Apertium with no structural transfer rules
(RBMT no rules). Same as above but using no
structural transfer rules. After morphological
analysis and part-of-speech tagging the lexi-
cal forms in Breton are translated into lexical
forms in French one by one, without apply-
ing any structural transfer to make the output
more grammatical, except for very simple one-
word rules that ensure that the morphological
features sent to the French generator for each
separate word are valid.

As regards the different ways of exploiting the
linguistic resources in Apertium, we generated the
additional input translation provided to the multi-
source NMT system with the same RBMT config-
urations used as reference systems (see above) as
well as a word-for-word translation obtained us-
ing exactly the same bilingual dictionary we used
for the base+dic NMT reference system. As this
dictionary contains multi-word lexical units, we
translated word for word in a left-to-right, longest-
match fashion so that the bilingual entry covering
the longest sequence of tokens is selected when
there is more than one possibility. When the bilin-
gual dictionary contained more than one translation
per source word, they were all included in the out-
put separated by a special token. This happened to
495 source words in the training corpus.

The results in Table 2 show that the use of Aper-
tium resources improves translation quality accord-
ing to both BLEU and chrF2++. The best improve-
ment, about 1.3 BLEU points, is obtained when the
additional input to the multi-source NMT system
is obtained without structural transfer rules (RBMT
no rules). However, if we pay closer attention to
the performance of the reference system RBMT no
rules on its own, the scores it obtains are worse than
those obtained with hand-crafted rules (RBMT man.
rules) and automatically inferred rules (RBMT auto
rules). This results suggest that Apertium may be
helping the NMT system to perform a better lexi-
cal selection, since the improvement in the gram-
maticality of the Apertium output provided by the
shallow-transfer rules has no effect on the quality of
the final translation. In any case, the use of a mor-
phological analyser and part-of-speech tagger for
Breton has a positive effect on the translation qual-
ity of the multi-source NMT system; compare the



BLEU

| Recurrent | Transformer

| reference systems

base NMT 21.25 £0.12 | 18.45 £ 0.08
base+dic NMT 21.26 +0.24 | 18.50 = 0.15
RBMT man. rules 12.45
RBMT auto rules 12.16
RBMT no rules 8.78

multi-source

RBMT man. rules | 21.36 & 0.46 | 19.16 = 0.02
RBMT auto rules | 22.24 +0.46 | 19.48 £+ 0.18
RBMT no rules 22.59 +0.06 | 19.70 £ 0.15
word-for-word 21.73 £0.22 | 1824 £0.13

chrF2++ | Recurrent | Transformer
] reference systems \
base NMT 38.38 £ 0.13 | 36.94 £ 0.03
base+dic NMT 38.68 £0.13 | 37.25 £ 0.09
RBMT man. rules 35.16
RBMT auto rules 33.86
RBMT no rules 3091

multi-source

RBMT man. rules | 39.58 4+ 0.27 | 38.80 + 0.08
RBMT auto rules | 40.12 4+ 0.34 | 39.03 £ 0.15
RBMT no rules 40.49 £+ 0.10 | 39.19 + 0.17
word-for-word 39.20 £0.10 | 37.17 £0.17

Table 2: BLEU and chrF2++ evaluation scores for different
reference systems and for the different multi-source NMT
configurations we have tried. RBMT stands for the Apertium
rule-based MT used.

performance of RBMT no rules with the word-for-
word translation which uses a bilingual dictionary
of surface forms. Finally, the addition of the bilin-
gual dictionary to the training corpus seems to have
no effect on translation quality.

In order to get a deeper insight about the effect
of the different hybridisation strategies, we carried
out an automatic error analysis following the strat-
egy of Toral and Sanchez-Cartagena (2017). We
used Hjerson (Popovi¢, 2011), '° which classifies
errors into five word-level categories: inflection er-
rors, reordering errors, missing words, extra words
and incorrect lexical choices. As it is difficult to
automatically distinguish between the latter three
categories (Popovi¢ and Ney, 2011), we grouped
them into a unique category named lexical errors.
Hjerson works on the surface form and lemma of
the words in the reference translations and MT out-
puts. The lemmas used were obtained with the
StandfordNLP lemmatiser (Qi et al., 2018).

We computed the relative difference in the num-

Ohttps://github.com/cidermole/hjerson

66

ber of Hjerson errors in the test set between the
multi-source NMT systems and the base NMT sys-
tem;!! a positive value means that the multi-source
system made more errors than the base NMT sys-
tem. Table 3 shows, for the recurrent and trans-
former architectures, the relative difference com-
puted for each error category and for the total num-
ber of errors. As each training was repeated 3 times,
the table reports the average and standard deviation
of the relative difference for the 9 possible combi-
nations between training runs. In order to contex-
tualise the relative differences, Table 4 reports the
average and standard deviation of the total number
of errors of each type in the baseline system.

For the recurrent architecture, the addition of ex-
panded dictionaries to the bilingual training corpus
does not significantly alter the number of errors.
One possible explanation could be that the poten-
tial gains of introducing more lexical knowledge
in the system are neutralised by the presence of
single-word sentences in the training corpus, that
could harm the fluency of the generated sentences.

Multi-source NMT systems, on the contrary, tend
to make fewer lexical errors than the base NMT
system. This happens for three out the four multi-
source systems, where the system with hand-crafted
rules is the only one in which the reduction in lexi-
cal errors is not statistically significant. Neither au-
tomatically inferred nor hand-crafted transfer rules
cause a statistically significant impact in the amount
of inflection errors, and both of them make reorder-
ing errors increase. The multi-source system with-
out transfer rules is the best performing system
according to automatic evaluation metrics because
it is the one that brings the largest reduction in lexi-
cal errors, which constitute the most frequent error
category (see Table 4). It is worth noting that the
bilingual dictionary in Apertium contains a single
translation for each SL lexical form, hence its lexi-
cal selection capabilities are poor. Overall, it seems
that the multi-source system is able to make a better
use of the translations from the bilingual dictionary
when they are sequentially placed in the additional
input rather than when they have been processed by
transfer rules.

Concerning the transformer architecture, some
differences in the way the different error categories
change can be observed. The transformer seems to
be more robust to the addition of dictionaries to the
training corpus: adding them leads to a statistically
significant reduction in lexical errors. Moreover,
the transformer multi-source systems make more

11 Computed as #errors_multi_source—#errors_base .
#errors_base




Recurrent

|

inflection

\ reordering

|

lexical

|

total

reference systems

base+dic NMT | -0.019 £ 0.024 | 0.022 £ 0.022 | 0.012 £ 0.024 | 0.007 £ 0.020
| multi-source
RBMT man. rules | 0.006 4+ 0.020 | 0.031 +0.017 | -0.017 +0.032 | -0.011 + 0.028
RBMT auto rules | -0.015 4+ 0.028 | 0.039 + 0.025 | -0.049 + 0.024 | -0.040 4+ 0.021
RBMT no rules 0.008 +0.016 | 0.045 +0.018 | -0.066 + 0.031 | -0.052 + 0.026
word-for-ford -0.005 £ 0.021 | 0.005 4+ 0.022 | -0.030 4 0.027 | -0.025 4 0.023
Transformer | inflection | reordering | lexical | total
] reference systems
base+dic NMT -0.010 £0.015 | -0.012 £ 0.017 | -0.009 + 0.004 | -0.010 4+ 0.003
‘ multi-source
RBMT man. rules | 0.048 +0.018 | 0.112 4+ 0.017 | -0.014 4+ 0.006 | 0.001 %+ 0.005
RBMT auto rules | 0.048 4+ 0.018 | 0.093 + 0.019 | -0.024 4+ 0.004 | -0.010 + 0.003
RBMT no rules 0.060 + 0.016 | 0.092 4+ 0.032 | -0.023 4+ 0.003 | -0.008 4+ 0.004
word-for-ford 0.007 £ 0.021 | -0.003 4+ 0.018 | -0.005 4+ 0.004 | -0.004 + 0.003

Table 3: For each NMT architecture, average and standard deviation of the relative changes in the amount of errors for each
error category (inflection, reordering, lexical and total). Increases in the amount of error whose confidence interval does not
intersect with zero are shown in red, decreases whose confidence interval does not intersect with zero are shown in green. For

each error type, the largest relative change is shown in bold.

‘ Recurrent ‘Transformer

inflection 1971 + 27 1869 £ 27
reordering | 2969 + 44 2910 £ 42
lexical 30641 + 726 | 27599 + 84

Table 4: For each architecture, absolute number of errors for
each type detected by the Hjerson tool on the translation of the
test set with the baseline NMT system.

inflection and reordering errors than the recurrent
ones. Nevertheless, the lexical errors behave in a
similar way in both multi-source architectures: the
configuration that leads to the largest reduction in
the number of lexical errors is the RBMT system
with no transfer rules.

Table 5 shows how the different systems eval-
uated translate a few sentences from the test set.
In the first example, the baseline system is not
able to correctly translate the Breton words e-barzh
and e-maez, whose meaning is correctly captured
by the Apertium dictionaries. The multi-source
systems are able to produce the right translations
(entrées and sorties, respectively entrances and ex-
its in English) or at least related words, while the
base+dic NMT repeats entrées. In the second ex-
ample, whose sentence structure is more complex,
the baseline system fails to produce a translation
that conveys the meaning of the fragment of the
reference On leur a donné le nom de satellites
galiléens, en hommage a Galilée, which roughly
means They were given the name of Galilean satel-
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lites, in homage to Galileo. Only two hybrid
systems were able to generate a translation that
captures that meaning of the fragment: the multi-
source systems without transfer rules and with au-
tomatically inferred rules.

5 Concluding remarks

This paper focused on the hybridisation of RBMT
and NMT for the Breton—French under-resourced
language pair. The aim of the paper is to study
to what extent the resources from the Apertium
RBMT system help the NMT system to improve its
output. We combined both translation approaches
in a multi-source NMT architecture and explore the
use of different resources in the Apertium Breton—
French system to generate the RBMT translation to
be used as an additional input.

Despite the low performance of the RBMT sys-
tem, the hybrid system is able to outperform a pure
NMT baseline. The best translation performance is
achieved with a hybrid system whose RBMT sub-
system contains no transfer rules at all but takes
advantage of the Breton morphological analyser
and part-of-speech tagger, the French generator and
post-generator and the bilingual dictionary.

The fact that the use of no transfer rules provides
the best results while the RBMT system using no
transfer rules, when evaluated in isolation, performs
worse than the rest of RBMT configurations may
seem contradictory. However, the automatic er-
ror analysis revealed that the hybrid systems using



[ # [ system | sentence
source Staliaf panellou divyezhek evit mont e-barzh ha mont e-maez ar gumun.
baseline mise en place d’une signalétique bilingue sur le site internet de la commune.

1 RBMT no rules Installer panneaux bilingues pour aller a I’intérieur et aller hors de le commune.
RBMT auto rules Installer panneaux bilingues pour aller a I’intérieur et aller hors de la commune.
RBMT man. rules Installer des panneaux bilingues pour aller a I’intérieur et aller hors de la commune.
base+dic NMT Installation de panneaux bilingues a I’entrée et de ’entrée de la commune.
ms. word-for-word Mise en place des panneaux bilingues aux entrées et sorties de la commune.
ms. RBMT no rules Mise en place de panneaux bilingues pour entrer et sortie de la commune.
ms. RBMT auto rules | Il s’agit pour Iinstallation de panneaux bilingues aux entrées et sorties de la commune.
ms. RBMT man. rules | Installation de panneaux bilingues d’entrée et de sortie d’agglomération.
reference Mise en place de panneaux bilingues aux entrées et sorties de la commune.
source Adplanedennou galilean a vez graet anezho e koun Galileo Galilei, ar steredoniour

italian a zizoloas anezho e 1610 gant ul lunedenn hepken.

9 baseline Les satellites galiléens Galilei, I’astronome italien redécouvre en 1610 avec un ceil nu.

RBMT no rules

RBMT auto rules

RBMT man. rules

base+dic NMT

ms. word-for-word

Satellites galilean a étre faire d’eux dans mémoire Galileo Galilei, le astronome italienne
a découvrir d’eux dans 1610 avec un lunette seulement.

Satellites galilean qui les faire des en mémoire Galileo Galilei, le astronome italien

qui découvrir des a 1610 par une lunette seulement.

Satellites galilean Il est fait d’eux dans mémoire Galileo Galilei, 1’astronome italien
découvrit d’eux dans 1610 avec une lunette seulement.

Les satellites galiléens sont des satellites galiléens, dont I’astronome italien

découvre en 1610 a un ceil nu.

Les satellites galiléens de Galilée, 1’astronome italienne traversent en 1610

par une lunette uniquement.
ms. RBMT no rules

ms. RBMT auto rules
par une lunette unique.
ms. RBMT man. rules
reference

Satellites galiléens sont évoqués dans la mémoire Galileo Galilei, I’astronome italienne
vous découvrira en 1610 avec une lunette unique.
De plus, les satellites galiléens forment la mémoire Galileo qui les découvre en 1610

Les satellites galiléens, 1’astronome italien découvrit en 1610 par une lunette seulement.
On leur a donné le nom de satellites galiléens, en hommage a Galilée (astronome Italien)
qui les découvrit en 1610 avec une simple lunette.

Table 5: Translations into French of different Breton sentences extracted from the test set and produced by the different hybrid
strategies evaluated (recurrent architecture; ms. stands for multi-source). The most remarkable differences are highlighted.

no transfer rules make fewer lexical errors, which
account for most of the errors produced by the sys-
tems, but more reordering and inflection errors.

Since transfer rules seem not to be needed in our
multi-source approach to succeed and morphologi-
cal analysers, morphological generators and small
bilingual dictionaries are available for many under-
resourced language pairs, we hope that the hybrid
approach presented in this paper opens the door to
the development of more accurate hybrid systems
in under-resource scenarios.
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Abstract

Sentiment analysis is a widely researched
NLP problem with state-of-the-art solu-
tions capable of attaining human-like ac-
curacies for various languages. How-
ever, these methods rely heavily on large
amounts of labelled data or sentiment
weighted language specific lexical re-
sources that are unavailable for low-
resource languages. Our work attempts
to tackle this data scarcity issue by in-
troducing a neural architecture for lan-
guage invariant sentiment analysis capable
of leveraging various monolingual datasets
for training without any kind of cross-
lingual supervision. The proposed archi-
tecture attempts to learn language agnostic
sentiment features via adversarial training
on multiple resource-rich languages which
can then be leveraged for inferring senti-
ment information at a sentence level on a
low resource language. Our model out-
performs the current state-of-the-art meth-
ods on the Multilingual Amazon Review
Text Classification dataset (Prettenhofer
and Stein, 2010) and achieves significant
performance gains over prior work on the
low resource Sentiraama corpus (Gangula
and Mamidi, 2018). A detailed analy-
sis of our research highlights the ability
of our architecture to perform significantly
well in the presence of minimal amounts of
training data for low resource languages.

(© 2020 The authors. This article is licensed under a Creative
Commons 3.0 licence, no derivative works, attribution, CC-
BY-ND.

1 Introduction

Sentiment analysis refers to a series of methods,
techniques, and tools aimed at extracting the in-
tended sentiment from a written opinion. Tradi-
tional sentiment analysis techniques have relied on
using supervised term weighting methods includ-
ing terms’ distribution of classes, word-level po-
larity scoring and using SVMs (Durant and Smith,
2006) and Naive Bayes classifiers (Prasad, 2010)
for pattern extraction using hand-crafted features.
The advent of deep learning techniques for senti-
ment analysis has now enabled the extraction of
high quality sentiment data from written texts. One
majorly overlooked factor in the performance of
these neoteric approaches is their dependency on
large annotated datasets compiled from multiple
data sources related to or sourced from newspa-
pers, tweets, photos and product reviews. (Socher
et al., 2013; Kim, 2014; Tai et al., 2015; Iyyer et
al., 2015; Wang et al., 2016).

Given global nature of the current information
sharing infrastructure, most data generated be-
longs to one of the three languages : English, Man-
darin or Spanish. This abundance of raw data aids
and motivates the creation of annotated resources
in these languages. Conversely, the paucity of an-
notated data in most languages makes it a challeng-
ing task to develop deep learning based solutions
for them. Hence there is a pressing need to pay
special attention to developing solutions capable of
sentiment analysis in a low resource setting.

Some of the initial methods that attempt to
tackle this problem of data scarcity using transfer
learning (training a neural model on one language
and applying the trained model on another lan-
guage via weight sharing) do not perform well due
to the limited overlap between the vocabularies of
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the different languages and difference in their syn-
tactic structure (Chen et al., 2018b).

Cross-lingual sentiment classification (CLSC)
methods try to alleviate this problem by leveraging
labeled data from one language to improve the per-
formance on another language (Bel et al., 2003).
However, these methods typically rely on auxiliary
cross-lingual resources such as a parallel corpora
(Yarowsky et al., 2001; Xu and Yang, 2017), bilin-
gual lexicons (Mihalcea et al., 2007) or the use
of machine translation systems (Kanayama et al.,
2004; Wan, 2009; Prettenhofer and Stein, 2010;
Can et al., 2018). Unfortunately, the curation of
such cross-lingual resources is both a time and a
labour intensive task. Hence, there is a need for
architectures that can perform well in the absence
of such cross-lingual resources.

In this paper, we address this problem by
presenting a neural Language Invariant Sentiment
Analyzer (LISA) architecture that is capable
of training on multiple monolingual sentiment
labelled datasets to learn language agnostic sen-
timent features that can be transferred to perform
sentiment analysis in low-resource languages
without leveraging any form of cross-lingual
supervision.

Approach : We formulate this problem as a
multi-lingual transfer learning (MLTL) language
adaptation task where we attempt to learn language
agnostic sentiment features via adversarial training
on labelled documents (sy, s2...5,) from multiple
(source) languages to improve the performance on
documents (1, to...t,,) from a low resource (tar-
get) language. The key components of our ap-
proach include learning monolingual word em-
beddings from s1, s2...5y, 1, t2...t,, and project-
ing them to a shared multilingual semantic space.
We employ an LSTM network to learn latent fea-
tures (z) from this multilingual space which is
then used by a sentiment classifier (S¢) to pre-
dict the sentiment polarity of a document d €
{s1...8n, t1...t;, }. Concurrently, a language classi-
fier (Cr) is trained to predict the language of docu-
ment d based on z. During the adversarial training
we try to minimize the binary cross-entropy loss of
Cs, while at the same time we maximize the cross-
entropy loss of C,. This results in a setting where
the LSTM learns to produce latent features z that
predicts the sentiment of document d correctly in-
dependent of the language of document d. We hy-
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pothesize that in this setting, the latent features (2)
trained would contain sentiment features that are
language agnostic.

In summary, the main contributions of this paper
are :

e We introduce a language independent neu-
ral architecture for sentiment analysis without
the use of language specific features or cross-
lingual supervision.

We provide extensive evaluations of the LISA
architecture in two settings :

(i) Low-resource Setting : Where labeled
data in the target language is available in lim-
ited amounts.

(ii) No-resource Setting : Where the is no
labeled data available in the target language.

Our experiments on the Multilingual Ama-
zon Review Text Classification dataset and
the Sentiraama dataset show that the pro-
posed LISA architecture achieves better per-
formance compared to prior work in the low-
resource setting.

The paper is structured as follows : Section 2
highlights the related prior work in the field of
CLSC. Section 3 introduces the datasets that are
used in our experiments. Section 4 presents the
methodology used to align multiple monolingual
semantic spaces to a common multilingual seman-
tic space. Section 5 describes in detail the various
components of the LISA architecture. Section 6
explains the adversarial training methodology em-
ployed. Section 7 describes our experimental set-
up and provides a detailed comparison of our ap-
proach with prior work in both the low-resource
and no-resource setting. Section 8 addresses the
advantages and shortcomings of the proposed ap-
proach and state our concluding remarks.

2 Background and Related Work

CLSC using Machine Translation Systems : The
most straightforward approach in CLSC involves
using machine translation systems to translate sen-
tences, words, phrases or documents in the target
language to the source language and then learn-
ing a classifier in the source language to predict
the sentiment (Kanayama et al., 2004; Wan, 2008;
Wan, 2009; Banea et al., 2010; Lu et al., 2011;
Can et al., 2018). The baseline CL-MT (Pretten-
hofer and Stein, 2010) method uses this technique



by using Google Translate! to translate documents
in the target language to the source language and
learns a classifier in the source language using
the bag-of-words features. Similarly, the BiDRL
model (Zhou et al., 2016) used Google Translate
and employed a joint learning approach to simul-
taneously learn both word and document represen-
tations in both source and target language which
are then used for sentiment classification. How-
ever, these methods are overly reliant on the per-
formance of the machine translation system uti-
lized, which in many cases, are less than satisfac-
tory.

CLSC using cross-lingual resources : Most
popular methods in CLSC makes use of cross-
lingual resources to bridge the language barrier
and induce inter-language correspondence. Bel
et al. (2003) used a bilingual dictionary to trans-
late documents in the target language to the source
language and trained a classifier in the source
language for text classification. Mihalcea et al.
(2007) used a bilingual lexicon to translate sub-
jective words and phrases in the source language
into the target language. Shi et al. (2010) uti-
lizes a bilingual dictionary to translate the classi-
fication model from a source language to a target
language rather than the documents themselves.
Balamurali et al. (2012) used WordNet senses as
features for CLSA in Indian languages (Hindi and
Marathi). The CLMM model (Meng et al., 2012)
treated the source language and the target language
words in an unlabeled bilingual parallel dataset
as generated simultaneously by a set of mixture
components. The CR-RL approach (Xiao and
Guo, 2013) learned word embeddings by using
a set of bilingual word pairs where one part of
the word vector contains language specific fea-
tures and the other part contains language inde-
pendent features. CL-SCL model (Prettenhofer
and Stein, 2010) leveraged structural correspon-
dence learning with the help of a bilingual dictio-
nary to learn a source-target feature space. Pham
et al. (2015) used a parallel corpus between the
source language and the target language to learn
bilingual paragraph vectors (Bi-PV). UMM (Xu
and Wan, 2017) learned multilingual sentiment-
aware word representations based on unlabeled
parallel data and used pivot languages to trans-
fer sentiment information in the absence of paral-
lel data . The CLDFA approach (Xu and Yang,

"https://translate.google.com/
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2017) adopted cross-lingual distillation and adver-
sarial techniques on parallel corpora for CLSC.
Our work draws inspiration from the ADAN-GRL
model (Chen et al., 2018b) which employed lan-
guage adversarial training to learn language in-
variant features from bilingual word embeddings
(BWE) which were created using a parallel cor-
pus. In fact, our proposed model can be consid-
ered as a cross-lingually unsupervised variant of
the ADAN-GRL model as we do not rely on par-
allel corpora to learn word representations. Fur-
thermore, the ADAN-GRL model is limited by
the BWE to only incorporate two language pairs
(source and target) during training, whereas our
LISA system is capable of leveraging multiple
source languages and the target language for ad-
versarial training.

CLSC without cross-lingual supervision Neo-
teric advances by Chen et al. (2018a) alleviates
the need for cross-lingual resources by introducing
a shared-private Mixture-of-Experts model (MoE)
that learns both language specific features and lan-
guage invariant features without cross-lingual su-
pervision. Our work, although related to MoE in
objective with respect to the lack of cross-lingual
supervision, differs in the methodology. Direct
comparison of our architecture against MoE (Ta-
ble 4) proves that the (language invariant) features
extracted by our architecture contains more senti-
ment related information than the (language spe-
cific + language invariant) features extracted by
MoE.

3 Dataset Description

We conduct our experiments on two publicly avail-
able sentiment classification datasets :

The Multilingual Amazon Review Text Clas-
sification dataset (Prettenhofer and Stein, 2010)
consists of sentiment labelled data in multiple lan-
guages. The vast amount of prior work on this
dataset helps us to directly compare our results
with the pre-existing state-of-the-art CLSC meth-
ods.

The Sentiraama Corpus (Gangula and
Mamidi, 2018) is a real-world low resource
sentiment corpus in Telugu (an agglutinating
Indian language). We use this dataset to test the
robustness of our system and evaluate our results
in a truly low resource setting.

In the following subsections we describe both
the corpora in detail.



3.1 Multilingual Amazon Review Text

Classification dataset

The Multilingual Amazon Review Dataset con-
tains sentiment labeled product reviews in four lan-
guages (English, German, French and Japanese)
across three domains (Books, Dvd and Music).
The German, French and Japanese reviews were
crawled from Amazon and the corpus was en-
hanced with English reviews from Blitzer et al.
(2007). Each review contains a domain label, a re-
view summary, a review text, and a rating from the
set {1,2,4,5} where {1,2} denotes negative sen-
timent and {4, 5} denotes positive sentiment. The
reviews in each domain for each language are split
into three disjoint balanced sets, namely, Train set,
Test set and Unlabeled set. The dataset statistics
are presented in Table 1.

Train | Test | Unlabelled

Books | 2000 | 2000 50000

English | DVD | 2000 | 2000 30000
Music | 2000 | 2000 25220

Books | 2000 | 2000 165470

German | DVD | 2000 | 2000 91516
Music | 2000 | 2000 60392

Books | 2000 | 2000 32870

French | DVD | 2000 | 2000 9358
Music | 2000 | 2000 15940

Books | 2000 | 2000 169780
Japanese | DVD | 2000 | 2000 68326
Music | 2000 | 2000 55892

Table 1: Multilingual Amazon Review Text Classification
dataset statistics.

3.2 Sentiraama Dataset

The Sentiraama dataset consists of sentiment la-
belled documents in four domains : Books,
Movies, Products and Song Lyrics. Each docu-
ment is given a positive or a negative label. The
corpus statistics are presented in Table 2.

Books | Movies | Products | Lyrics
Positive 100 136 100 230
Negative | 100 131 100 109
Total 200 267 200 339

Table 2: Sentiraama corpus statistics.

To avoid cross-domain discrepancies we restrict
our experiments to the Books and Movies domain
as it has similar counterparts in the Multilingual
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Amazon Review Dataset, i.e, Books and Dvd re-
spectively. We divide the Books and Movie do-
mains of the Sentiraama dataset to create a Train
set and a Test set using an 80-20 train-test split.
The statistics of the subset of the corpus that are
used in our experiments are listed in Table 3.

Books Movies

+ve | -ve | +ve | -ve

Train | 80 | 80 | 108 | 105
Test | 20 | 20 | 28 | 26

Table 3: Subset of the Sentiraama corpus used in our experi-
ments.

4 Multilingual Word Representation

For our experiments, we train fastText embeddings
(Bojanowski et al., 2017) to project each word to
a monolingual semantic space for each language
in the datasets described in Section 3. We then
employ the unsupervised MUSE approach (Con-
neau et al., 2017) to align the monolingual spaces
of each language in an adversarial manner to a
common multilingual semantic space. While train-
ing MUSE we use English as the target semantic
space and align all the other monolingual seman-
tic spaces to this space. Let X = {x1,x2,... 24}
and Y = {y1,92,...yp} be the source and tar-
get fastText word embeddings respectively. Let
W be a linear mapping from X to Y. A dis-
criminator is trained to discriminate between ele-
ments randomly sampled from WX and ) while
W (which acts as the generator) is jointly trained
to fool the discriminator. The discriminator loss
function Lp(0p|W) is formulated as:

Lp(Op|W)

1 a
—= E logPy,, (source = 1|Wx;)
a
i=1

b
1
3 Z logPy,, (source = 0ly;)
i=1
The Mapping objective function used to train W
is given by:

Lw(W10p)

1 a
—= E logPy,, (source = 0|Wx;)
a
i=1

b
1
~3 Z logPy,, (source = 1|y;)
i=1

Where 6p denotes the discriminator parameters
and Py, (source = 1|z) is the probability that a
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Figure 1: The LISA architecture.

vector z is the mapping of a source embedding ac-
cording to the discriminator.

Next, a synthetic parallel vocabulary consist-
ing of the most frequent words and their mutual
nearest neighbors are extracted from the result-
ing shared embedding space W to fine-tune the
mapping using the closed-form Procrustes solution
(Schonemann, 1966) given by:

W* = argmin|WX —=Y||p =UVT
WEOd(R)

with UXVT = SVD(Y X7)

Where X and Y are two aligned matrices con-
taining the embeddings of the words in the trained
space W, d represents the dimension of the em-
beddings, O4(R) is the space of d x d matrices of
real numbers with the orthogonality constraint and
SVD(Y X7T) represents the singular value decom-
position of Y X7,

5 LISA Architecture

The input to the LISA model is a review r; that
is made up of a sequence of words wy, wa, . . . W.
Each review r; is associated with a language la-
bel I; € L where L = {l1,ls,...1,} is the set of
all language labels used in training. Additionally,
each review 7; is also associated with a sentiment
label t; € {positive, negative} which denotes the
sentiment polarity of the review. We project each
word w; to the multilingual semantic space (from
section 4) to obtain a sequence of n-dimensional
word embeddings ey, ea, . .. e, where e; € R"™.
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The following subsections describe in detail the
individual components of the LISA architecture.
Figure 1 shows the overall architecture of the pro-
posed model.

5.1

The Multilingual Sequence Encoder () processes
the sequence of word embeddings (e, es,...ex)
and transforms it into an m-dimensional (hid-
den) vector #(r;). To this end, the embeddings
for all the words in review r; are passed se-
quentially through a Long Short-Term Memory
(LSTM) network (Hochreiter and Schmidhuber,
1997). LSTMs are a variant of RNNs that learns
features that model the long-term dependencies be-
tween the words. The LSTM network, at each time
step outputs a hidden state h; for every input word
embedding e;, such that :

Multilingual Sequence Encoder ()

h; = LSTM(G,’, hi—l) eR™

The final hidden state #(r;) = hy is then passed
through a Language Discriminator (C) and a Sen-
timent Analyzer (Cs).

5.2 Language Discriminator (C.)

The goal of the Language Discriminator (C.) is
to predict the language label [; based on H(r;).
In other words, C tries to predict the language
from which the sequence of words wy, wa, ... wg
come from. The C, comprises of a Gradient Rever-
sal Layer (GRL)), followed by two Dense Lay-
ers and an output Softmax Layer that applies the



softmax function over all the languages used in
training. During backpropagation, GRL) multi-
plies the gradients by a factor of —\ and during
the forward pass it acts as the identity function. A
is hyperparameter in the network.

5.3 Sentiment Analyzer (Cs)

The Sentiment Analyzer (Cs), as the name sug-
gests, tries to predict the sentiment label ¢; of the
input review 7; based on #H(r;) . The Cs is made up
of two Dense Layers followed by an output Soft-
max Layer that applies the the softmax function
over the two sentiment polarities (positive and neg-
ative).

6 Adversarial Training

Inspired by recent works (Goodfellow et al., 2014;
Ganin et al., 2016; Beutel et al., 2017), we train
the LISA model using adversarial training on a set
of labeled reviews R = {r1, 72, ..., }. The aim of
the LISA model is to predict the sentiment label ¢;
for a given review r; independent of the language
label I;.

We formulate the learning objective in a way
that minimizes the sentiment classification loss
from Cs and maximizes the language classification
loss from C,. As a result, the LISA model tries to
jointly optimize the below functions:

arg%}icg f(Cs(H(ri)),ti) — f(Cc(H(rq)), L)
(D

arg max J(Ce(H(ri)), li) 2)
Where f denotes the loss function used. This
results in a setting where the C tries to predict /;
based on a given H(r;) and the encoder # tries
to “fool’ the C, by learning to create H(r;) that
is minimally influenced by the language label I;
while at the same time, is maximally influenced
by the Cs to predict he sentiment label ¢; correctly.
The M-LiST model (Goud et al., 2019) presents
a similar setting for the task of open domain event
detection that was trained using a Gradient Rever-
sal Layer GRL) (Ganin et al., 2016) between H
and C7,. By using GRL), the optimization func-
tions (equations 1 and 2) can be simplified as :

arg Hr(r:ll% f(Cs(H(ri)), ti) +

LSH,LL

f(Cc(GRLA(H(r:))), i)  (3)
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7 Experiments and Results

In this section we present an extensive set of ex-
periments conducted on the Multilingual Amazon
Review Text Classification dataset and the Telugu
Sentiraama sentiment classification corpus. We
evaluate our approach in the two settings described
below :

Low-resource setting : We evaluate the perfor-
mance of the LISA architecture in the low-resource
setting (termed LISA-LR) by training it on the
Train sets from multiple source languages and the
limited Train set in the target language and then
testing on the Test set of the target language.

No-resource setting : In the no-resource set-
ting, we assume that the training data is not avail-
able for the target language. We train the LISA
model (termed LISA-NR) on the Train sets of the
source languages and evaluate the model on the
target language Test set.

LISA - No Language Discriminator : To show
the effectiveness of the Language Discriminator
(Cr), we conduct ablation experiments in the low-
resource setting where we remove C. from the
LISA architecture. In this variant of the LISA
model (termed LISA-NoLD), the Sentiment An-
alyzer only depends on the MUSE embeddings to
learn H(r;) to learn sentiment features. Our exper-
iments show that LISA-LR performs significantly
better in most cases than LISA-NoLD.

For the Multilingual Amazon Review Text Clas-
sification dataset in the low-resource setting, we
train LISA-LR on the Train sets of all the four lan-
guages. We then test it on the Test set of the tar-
get language. In the no-resource setting, we train
LISA-NR on the Train sets of three languages and
test it on the Test set of the fourth language. We do
this for each domain in the corpus independently.
We compare our results against prior state-of-the-
art methods that uses Machine Translation Sys-
tems (CL-MT and BiDRL), methods that lever-
age cross-lingual supervision (UMM, Bi-PV, CR-
RL and CL-SCL) and the cross-lingually unsuper-
vised MAN-MoE method of Chen et al. (2018a).
The results are presented in Table 4.

For the Sentiraama Corpus in the low-resource
setting, we train LISA-LR by leveraging the Train
sets of all the languages in the Multilingual Ama-
zon dataset along with the Sentiraama Train Set.
We then test the system on the Sentiraama Test set.



German French Japanese

Books | DVD | Music Books | DVD | Music Books | DVD | Music

CL-MT 79.68 | 77.92 | 77.22 80.76 | 78.83 | 75.78 70.22 | 71.30 | 72.02
BiDRL 84.14 | 84.05 | 84.67 84.39 | 83.60 | 82.52 73.15 | 76.78 | 78.77
UMM 81.65 | 81.27 | 81.32 80.27 | 80.27 | 79.41 71.23 | 72.55 | 75.38
Bi-PV 79.51 | 78.60 | 82.45 84.25 | 79.60 | 80.09 71.75 | 75.40 | 75.45
CR-RL 79.89 | 77.14 | 77.27 78.25 | 74.83 | 78.71 71.11 | 73.12 | 74.38
CL-SCL 79.50 | 76.92 | 77.79 78.49 | 78.80 | 77.92 73.09 | 71.07 | 75.11
MAN-MoE | 82.40 | 78.80 | 77.15 81.10 | 84.25 | 80.90 62.78 | 69.10 | 72.60
LISA-LR 85.45 | 84.90 | 86.55 86.25 | 85.35 | 85.60 79.20 | 83.30 | 80.892
LISA-NR 55.60 | 55.50 | 58.90 68.95 | 70.65 | 64.30 62.20 | 56.50 | 59.80
LISA-NoLD | 81.20 | 77.70 | 80.75 82.80 | 80.10 | 80.50 79.05 | 83.15 | 82.542

Table 4: Results on the Multilingual Amazon Review Text Classification dataset. The numbers denote binary classification

accuracies.

In the no-resource setting, LISA-NR only utilizes
the Train set of all the languages in the Multilin-
gual Amazon dataset and test the system on the
Sentiraama Test set. We do this for the Books
and Movies domain separately. We evaluate the
results of LISA-LR, LISA-NR and LISA-NoLD
against the Bernoulli Naive Bayes (Rish and oth-
ers, 2001) and SVM (Joachims, 1998) baselines
that use TF-IDF features which were set by Gan-
gula and Mamidi (2018). The experimental results
are given in Table 5

Books | Movies

SVM 55 51.851
Naive Bayes 65 75.9

LISA-LR 72.5 | 85.185

LISA-NR 57.5 | 57.407
LISA-NoLD | 67.5 68.51

Table 5: Results on the Sentiraama Dataset. The numbers
denote binary classification accuracies. Note that the Naive
Bayes and SVM accuracies presented in the table differ from
the ones presented by Gangula and Mamidi (2018). We at-
tribute this to the difference in the train/test splits and the
the lack preprocessing guidelines which makes it hard to ade-
quately replicate their results.

8 Analysis and Conclusion

Analysis : The results on the Multilingual Ama-
zon Review Text Classification dataset proves our
hypothesis that our model learns language invari-
ant features that can be generalized across lan-
guages. The empirical results in Table 4 show
that our model outperforms pre-existing state-of-
the-art methods on this dataset. While our ex-
periments on the Sentiraama dataset proves that

77

our model can be applied in a real-world setting
to enhance sentiment retrieval in a truly low re-
source language. The ablation experiments (LISA-
NoLD vs LISA-LR) show that between language
pairs that have similar syntactic structure (exam-
ple : English, French and German), LISA-LR per-
forms much better than LISA-NoLD. This shows
the the performance gains over prior work are not
just due to the use of MUSE embeddings. Rather,
they are attributed to the adversarial training of the
Language Discriminator and the Sentiment classi-
fier that extracts language agnostic sentiment fea-
tures from the MUSE semantic space. But for
Japanese (which is dissimilar with respect to other
languages in the corpus), the results show that
LISA-LR does not have a significant boots over
LISA-NoLD. This is because our language adver-
sarial training will retain only features that are in-
variant across all four languages, which is restric-
tive such that the information learnt will be too
sparse to be useful. Finally, the poor performance
of LISA-NR shows that our approach cannot be
used for Zero-Shot learning but will achieve state-
of-the-art performance in the presence of limited
amounts of data.

Conclusions : In this paper, we present the
LISA model which focuses on exploiting language
invariant features for multilingual sentiment anal-
ysis without any form of cross-lingual supervi-
sion. We back our claims by conducting a wide
range of experiments over the Multilingual Ama-
zon Review Text Classification dataset and the
Sentiraama dataset which is a real-world low re-
source dataset. We show that our model outper-
forms not only the existing cross-lingually unsu-
pervised methods but also methods that rely on



strong cross-lingual supervision. Additionally, our
model sets the new state-of-the-art accuracies for
the Sentiraama corpus.
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Abstract

Unsupervised Machine Translation has
been advancing our ability to translate
without parallel data, but state-of-the-art
methods assume an abundance of mono-
lingual data. This paper investigates the
scenario where monolingual data is lim-
ited as well, finding that current unsuper-
vised methods suffer in performance un-
der this stricter setting. We find that the
performance loss originates from the poor
quality of the pretrained monolingual em-
beddings, and we propose using linguis-
tic information in the embedding train-
ing scheme. To support this, we look at
two linguistic features that may help im-
prove alignment quality: dependency in-
formation and sub-word information. Us-
ing dependency-based embeddings results
in a complementary word representation
which offers a boost in performance of
around 1.5 BLEU points compared to stan-
dard WORD2VEC when monolingual data
is limited to 1 million sentences per lan-
guage. We also find that the inclusion of
sub-word information is crucial to improv-
ing the quality of the embeddings.

1 Introduction

Machine Translation (MT) is a rapidly advancing
field of Natural Language Processing, where there
is an ever-increasing number of claims of MT sys-
tems reaching human parity (Hassan et al., 2018;
Barrault et al., 2019). However, most of the fo-
cus has been on MT systems under the assumption
(© 2020 The authors. This article is licensed under a Creative

Commons 3.0 licence, no derivative works, attribution, CC-
BY-ND.

that there is a large amount of parallel data avail-
able, which is only the case for a select number of
language pairs.

Recently, there have been approaches that do
away with this assumption, requiring only mono-
lingual data, with the first methods based solely
around neural MT (NMT), using aligned pre-
trained embeddings to bootstrap the translation
process, and refining the translation with a neural
model via denoising and back-translation (Artetxe
et al., 2017b; Lample et al.,, 2017). More re-
cently, statistical MT (SMT) approaches as well
as hybrid approaches, combining SMT and NMT,
have proven more successful (Lample et al., 2018;
Artetxe et al., 2019).

While the unsupervised approaches so far have
done away with the assumption of parallel data,
they still assume an abundance of monolingual
data for the two languages, typically assuming
at least 10 million sentences per language. This
amount of data is not available for every language,
notably languages without much of a digital pres-
ence. For example, Fulah is a language spoken in
West and Central Africa by over 20 million peo-
ple, however there is a scarce amount of data freely
available online. This motivates a new paradigm
in unsupervised MT: Low-Resource Unsupervised
MT (LRUMT).

In this paper, we investigate the reasons why
current unsupervised NMT methods fail in the
low-resource setting, addressing the source of the
issue, and we propose a potential solution to make
unsupervised NMT more robust to the lack of
availability of monolingual data.

We start by giving a brief overview of the work
so far in unsupervised MT in Section 2, estab-
lishing the general pipeline used to train an unsu-
pervised system. We then identify the source of
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the performance problem in LRUMT in Section 3,
and propose potential improvements in Section 4.
Lastly, in Section 5, we present our conclusions
and lines for future work.

2 An Unsupervised MT Overview

The typical unsupervised NMT pipeline can be
broken down into 3 sequential steps:

1. Train monolingual embeddings for each lan-

guage
Align embeddings with a mapping algorithm

. Train NMT system, initialized with aligned
embeddings

In the first step, monolingual embeddings (which
we will also refer to as pretrained embed-
dings) are most often trained in the style of
WORD2VEC’s skip-gram algorithm (Mikolov et
al., 2013). To incorporate sub-word information,
Lample et al. (2018) use FASTTEXT (Bojanowski
et al., 2017), which formulates a word’s embed-
ding as the sum of its character n-gram embed-
dings. Artetxe (2019) uses a WORD2VEC exten-
sion PHRASE2VEC (Artetxe et al., 2018b), which
learns embeddings of word n-grams up to trigrams,
effectively creating embeddings for phrases.

The second step involves the alignment of the
two monolingual embeddings such that the em-
beddings of words with identical or similar mean-
ing across language appear close in the shared em-
bedding space. Artetxe et al. achieve this using
VECMAP (Artetxe et al., 2018a), which learns a
linear transformation between the two embeddings
into a shared space. If there is a large shared vo-
cabulary between the two languages, it is also pos-
sible to concatenate the monolingual corpora and
train a single embedding for both languages, ef-
fectively completing steps 1 and 2 simultaneously
(Lample et al., 2018).

The third and final step is to train the NMT
model. The architecture can be any encoder-
decoder model, with the condition that it can trans-
late in both directions. Models typically share an
encoder and decoder for both languages, with a
language token provided only to the decoder. Two
objectives are used to train the model: denois-
ing and on-the-fly back-translation. Denoising is
monolingual; the model is given an altered sen-
tence (e.g. with word order shuffling or word re-
moval) and trained to reconstruct the original, un-
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altered sentence. On-the-fly back-translation in-
volves first translating a sentence from the source
language (ssrc) to the target language (sggt). This
creates a pseudo-parallel sentence pair (s;gt, Ssre)s
so the output ségt is translated back to the source
language (creating s”..), and the model is trained
to reconstruct the original source sentence, mini-
mizing the difference between s” . and sg... De-
noising and back-translation are carried out alter-
nately during training.

The unsupervised SMT approach is fairly simi-
lar, with a replacement of step 3 (or in the hybrid
approach, a step added between steps 2 and 3). In
Artetxe et al. (2019) for example, a phrase-based
SMT model is built by constructing a phrase table
that is initialized using the aligned cross-lingual
phrase embeddings, and tuning it using an unsu-
pervised variant of the Minimum Error Rate Train-
ing (Och, 2003) method. For the hybrid model, the
SMT system can then create pseudo-parallel data
used to train the NMT model, alongside denois-
ing and back-translation. In the remainder of this
paper, we focus on the purely NMT approach to
unsupervised MT.

3 The Role of Pretrained Embeddings in
Unsupervised MT

With the pipeline established, we now turn to the
LRUMT setting. In LRUMT, the existing un-
supervised approaches fail somewhere along the
pipeline, but simply measuring MT performance
does not make it clear where this failure occurs.
We speculate that the failure is relative to the qual-
ity of the pretrained word embeddings, and subse-
quent quality of the cross-lingual alignment. We
test this hypothesis in this section.

The aligned pretrained embeddings of an un-
supervised NMT system are what jump-starts the
process of translation. From aligned pretrained
embeddings alone, we can effectively do word-for-
word translation, which is commonly measured
using Bilingual Lexicon Induction (BLI). With-
out well-aligned pretrained embeddings, denoising
and back-translation alone are not enough to pro-
duce meaningful translations.

For our following experiments', we train on En-
glish and German sentences from the WMT Mono-
lingual News Crawl from years 2007 to 2017,
use newstest 2015 for development and newstest

'Our code for running our experiments can be found at:
https://github.com/Leukas/LRUMT



BLEU vs. Amount of Training Data
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Figure 1: English—German BLEU scores of unsupervised
NMT systems where the amount of training data used for the
pre-trained embedding training and the amount used for the
NMT model training is varied.

2016 for testing, following Lample et al. (2018).
The training data is filtered such that sentences
that contain between 3-80 words are kept. We
then truncate the corpora to sizes ranging from
0.1 to 10 million sentences per language, speci-
fied as necessary. We used UDPIPE (Straka and
Strakov4, 2017) for tokenization?, MOSES (Koehn
et al., 2007) for truecasing, and we apply 60 thou-
sand BPE joins (following Lample et al. (2018))
across both corpora using fastBPE.3-* We train the
word embeddings using the WORD2VEC skipgram
model, with the same hyperparameters as used in
Artetxe et al. (2017b), except using an embedding
dimension size of 512.°> For embedding align-
ment, we use the completely unsupervised version
of VECMAP with default parameters. We then
train our unsupervised NMT models using Lam-
ple et al. (2018)’s implementation, using the de-
fault parameters, with the exception of 10 back-
translation processors rather than 30 due to hard-
ware limitations. We use the early stopping crite-
rion from Lample et al. (2018).6

To demonstrate the importance of a large
amount of training data, we vary the amount of
monolingual data used for training the embeddings
as well as the amount used for training the NMT

>We use UDPIPE’s tokenizer over the commonly used
MOSES as UDPIPE learns tokenization from gold-standard
labels based on the UD tokenizing standard, allowing for
higher-quality dependency parsing (which will be used in
Section 4).
‘https://github.com/glample/fastBPE

“BPE is not applied when measuring BLI or word similarity.
SWe use a dimension size of 512 to match the embedding size
used in Lample et al. (2018)’s Transformer model.

%We also limit training to 24 hours. On the GPU we used to
train our experiments, an Nvidia V100, limiting the training
time only affected systems which used 10 million sentences
per language.
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Figure 2: BLI of standard WORD2VEC using various amounts
of training data, measured with precision at 1, 5, and 10.

system in Figure 1.7 Even if we then use 10 million
sentences per language to train the NMT system,
using only 100 thousand sentences per language to
train the embeddings results in a BLEU score be-
low 1. Conversely, the NMT system can achieve a
BLEU score of around 6 using embeddings trained
on 10 million sentences, even when the NMT sys-
tem is only trained on 100 thousand sentences per
language.

We also provide Figure 2, showing the
BLI scores of the aligned embeddings (using
the English—German test set from Artetxe et
al. (2017a)®) as we vary the amount of training data
used for the embeddings. We can see that the BLI
scores decrease dramatically as the amount of sen-
tences decreases, matching the trend of the results
from Figure 1. Although BLI has been criticized
for not always correlating with downstream tasks
(Glavas et al., 2019), in this case, poor alignment
corresponds to poor MT performance.

In these experiments, we use VECMAP for
aligning embeddings. VECMAP’s algorithm be-
gins by initializing a bilingual dictionary, which
uses a word’s relations to the other words in the
same language, with the idea being that “apple”
would be close to “pear” but far from “motorcy-
cle” in every language, for example. However, if
the quality of embeddings is poor, the random ini-
tialization of embeddings has a greater dampening
effect. Using embedding similarity tasks (shown
in Table 1), we find this to be the case.

We measure the quality of the monolingual em-
beddings using 3 similarity datasets for English:

" Although we only show results for an unsupervised NMT
system, the state-of-the-art SMT systems also require initial-
ization from pretrained embeddings. Therefore, we expect the
same trend would appear.

8We modify the test set by truecasing it in order to match our
models.



C e Amount of Data (M)
Word Similarity 01 1 10
EN - MEN 0.138 0.421 0.705
EN - WS353 0.018 0.461 0.628
EN - SIMLEX 0.011 0.232 0.300
DE - SIMLEX_DE | 0.017 0.051 0.293

Table 1: The Spearman correlation of the similarity of word
pairs (measured by cosine similarity) and human evalua-
tion. Evaluation done using: https://github.com/
kudkudak/word-embeddings—-benchmarks

MEN (Bruni et al., 2014), WS353 (Agirre et al.,
2009), and SIMLEX999 (Hill et al., 2015). We
also use Multilingual SIMLEX999 (Leviant and
Reichart, 2015) for German and denote this as
SIMLEX_DE.

As we can see in Table 1, the correlation to hu-
man judgment on similarity tasks decreases dra-
matically as the amount of data used to train the
models decreases. The poor correlation when data
is limited explains VECMAP’s poor alignment, as
it relies on word similarity being relatively equiva-
lent across languages for its initialization step.

4 Getting More out of Scarce Data

With the source of the problem established as the
drop in quality of embeddings, we ask ourselves:
how can we prevent this drop in a low-resource
scenario, where considerably less monolingual
data is available? We argue that the conventional
word embedding methods (i.e. WORD2VEC) do
not use all of the information present within sen-
tences during the training process.

Word embedding algorithms typically define a
context-target pair as a word and its neighbor-
ing words in a sentence, respectively. While this
method works with a large amount of data avail-
able, it relies on the fact that a word is seen in sev-
eral different contexts in order to be represented
in the embedding space with respect to its mean-
ing. When data is limited, the contexts contain too
much variability to allow for a meaningful repre-
sentation to be learned.

To test this, we use an embedding strategy
that has a different definition of the context:
dependency-based word embeddings (Levy and
Goldberg, 2014). These embeddings model the
syntactic similarity between words rather than se-
mantic similarity, providing an embedding repre-
sentation complementary to standard embeddings.

This section presents our findings using
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punct
dobJ
PRI """ \BZ %
She owns a toucan.

Figure 3: Example of a dependency-parsed sentence.

dependency-based embeddings (4.1). We also
consider the effect of using sub-word information
via FASTTEXT (4.2). With the previous two
approaches, we find that ensembling models
can be useful, and investigate this further (4.3).
Finally, we vary context window size and report
on its effect (4.4).

4.1 Dependency-Based Embeddings

Dependency parsing offers a formalization of the
grammatical relationship between the words in a
sentence. For each sentence, a dependency parser
will create a tree in which words are connected if
they have a dependency relation between them. As
shown in Figure 3, the nsub j relation denotes the
subject-to-verb relation between she and owns,
for example.

Levy and Goldberg (2014) use dependency in-
formation to train word embeddings, defining the
context as the parent and child relation(s) of the
target word. This has two effects that distin-
guish dependency-based embeddings from stan-
dard embeddings. Firstly, the context is limited
to syntactically-related words. For example, deter-
miners are always limited to a context of a noun.
Therefore, words of the same part-of-speech tend
to be closer in the embedding space, since they
have similar contexts. Secondly, the context is not
limited by the distance between words in a sen-
tence. For example, Figure 4 shows a long-range
dependency between item and rack. This rela-
tion would only be captured by a standard word
embedding algorithm with a large context window
of length 14 or greater, whereas in the dependency-
based version rack is one of 4 tokens in item’s
context, and item is one of 6 tokens in rack’s
context.

Levy and Goldberg (2014) also require the em-
bedding model to predict the relation between the
target word and a context word, and whether it is
a parent or child relation. This explicitly trains the
model to understand the syntactic relationship be-
tween two words, which provides information on
the function of a word in a sentence. For example,
referring back to Figure 3, the fact that owns has
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Figure 4: Example of a sentence with a long-range dependency, in this case, an nsub j relation between item and rack.

a dobj relation means that owns is a transitive
verb. Although this information could be learned
implicitly by regular WORD2VEC, as the amount
of training data decreases, it becomes much harder
to learn without explicit labels.

Due to their reduced context variability and their
explicit learning of linguistic information, we ex-
pect dependency-based embeddings to achieve a
better alignment in the low-resource setting.

In the following experiments, we use the same
settings as mentioned in Section 3, apart from
those explicitly mentioned. With the addition of
dependency parsing into the pipeline, we apply a
parser on the tokenized sentences, while truecas-
ing is learned prior to but applied after parsing.
We use the StanfordNLP parser (Qi et al., 2019),
using the pretrained English and German models
provided to parse our data.

Although the dependency parser that we use is
supervised, therefore requiring dependency data, it
is possible to train a dependency parser in an un-
supervised fashion (He et al., 2018). Regardless, a
dependency parser extracts linguistic information
that is present in a sentence, thus our dependency-
based method can still show whether using such
linguistic information for training embeddings is
useful for their alignment.

For training dependency-based word embed-
dings, we apply Levy and Goldberg (2014)’s
dependency-based WORD2VEC, and compare this
against the standard WORD2VEC. For the
dependency-based embeddings, we use the same
hyperparameters as we use for WORD2VEC.

To achieve considerable results in unsupervised
NMT, it is necessary that we apply Byte-Pair En-
coding (BPE) (Gage, 1994). In the dependency-
based pipeline, this is learned after truecasing and
applied after dependency parsing. In order to apply
BPE to dependency-parsed sentences, any words
that are split into multiple sub-word units will have
a bpe relation or relations connecting them. We
connected sub-word units from left-to-right, where
the leftmost unit was the parent of all other units.”

9We experimented with several methods of connecting the re-
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Amount (M) Reg DP Reg+DP
0.1 0.00%  0.00% 0.00%
0.4 027% 0.18%  0.62%
1 249%  5.05%  9.64%
2 1528% 11.32% 18.66%
10 35.86% 25.03% 36.06%

Table 2: BLI P@5 scores for aligned standard (Reg),
dependency-based (DP), and hybrid (Reg+DP) WORD2VEC
embeddings. The best scores are shown in bold.

In addition to the standard and dependency-
based word embeddings, we also combine the two
approaches, forming a hybrid embedding. This
is done by training word embeddings using both
methods separately with half the embedding di-
mension size (i.e. 256), concatenating them, and
aligning them with VECMAP. We use the + sym-
bol to denote a combined model.

Table 2 shows the BLI accuracies for the
standard WORD2VEC (Reg), dependency-based
WORD2VEC (DP), and hybrid (Reg+DP) embed-
dings as we vary the amount of monolingual sen-
tences available to the embedding algorithms. We
can see that the hybrid model outperforms the
other two models at each threshold for data, apart
from 100 thousand, where all three models fail en-
tirely. Although the dependency-based model per-
forms relatively poorly in cases where more than
1 million sentences are available, we see that the
hybrid model still outperforms the regular model,
which would indicate that the dependency-based
model is providing complementary information to
the regular model.

We also include Table 3, shows
the English—+German BLEU scores'® of our
NMT systems using the pretrained standard,
dependency-based, and hybrid embeddings. Here,
we see that the standard embeddings outperform
the other two models when they are given 2 mil-
lion or more sentences to train on. We suspect

which
10

lations, considering token length and frequency, but we found
that the connection method had little impact on the resulting
BLEU scores.

1We report the German—English BLEU scores in Table 8 in
Appendix A.



Amount (M) | Reg DP Reg+DP Amount (M) Fast Fast+Reg Fast+DP
0.1 0.44 097 0.4 0.1 0.24% 0.36% 1.45%
0.4 1.58 2.56 3.26 0.4 0.18% 1.06% 19.98%
1 5.41 5.9 6.99 1 0.78%  29.86%  25.66%
2 931 7.82 8.82 2 34.09%  35.64%  29.98%
10 129 10.28 11.41 10 4736%  50.61%  50.34%

Table 3: English—German BLEU scores for NMT models
using pretrained standard (Reg), dependency-based (DP), and
hybrid (Reg+DP) embeddings. The best scores are shown in
bold.

this difference in performance is due to the in-
clusion of BPE, as that is the only difference in
preprocessing. When adding the bpe relation to
our dependency-parsed sentences, we may inad-
vertently isolate some sub-word units from their
natural contexts. As we treat the leftmost unit as
the parent, the other units will only have a relation
to the leftmost unit, limiting their context and po-
tentially adversely affecting their embedded repre-
sentation.

Despite the potentially adverse effects of BPE,
we see that dependency-based embeddings and hy-
brid embeddings outperform standard embeddings
when monolingual data is limited to 1 million sen-
tences per language or fewer.

4.2 Considering Sub-word Information

As Lample et al. (2018) and Artetxe et al. (2019)
established, considering sub-word information
proves very effective in increasing the performance
of unsupervised MT systems. We follow Lam-
ple et al. (2018) and achieve this by using FAST-
TEXT. As FASTTEXT represents words as a sum-
mation of character n-grams, rarer words can have
a meaningful representation if they are composed
of common character n-grams. So as data becomes
more scarce, FASTTEXT effectively relies on mor-
phemes to represent words.

For FASTTEXT, we use the same hyperparam-
eters as used for the regular WORD2VEC, apart
from the context size, in which we follow Lam-
ple et al. (2018) and use a size of 5. Additionally,
we create hybrid models of FASTTEXT and regu-
lar WORD2VEC concatenated (Fast+Reg), as well
as FASTTEXT and dependency-based WORD2VEC
concatenated (Fast+DP). The resulting BLI scores
are shown in Table 4.

We can see that the inclusion of sub-word in-
formation via FASTTEXT has a very large impact
on the alignment quality in general: for FAST-
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Table 4: BLI P@5 scores for aligned FASTTEXT (Fast),
and two hybrid models consisting of FASTTEXT with reg-
ular (Fast+Reg) and FASTTEXT with dependency-based
(Fast+DP) WORD2VEC embeddings. The best scores are
shown in bold.

Amount (M) Fast Fast+Reg Fast+DP
0.1 0.77 1.94 1.16
0.4 7.47 7.28 5.32
1 10.37 9.37 7.48
2 11.49 11.48 10.12
10 13.98 13.89 11.77

Table 5: English—German BLEU scores for aligned FAST-
TEXT (Fast), and two hybrid models consisting of FASTTEXT
with regular (Fast+Reg) and FASTTEXT with dependency-
based (Fast+DP) WORD2VEC embeddings. The best scores
are shown in bold.

TEXT alone, the alignment scores improve over the
regular and dependency-based models, provided
there are 2 million or more sentences. Unlike with
regular embeddings, the Fast+DP model does not
provide improvements when there are at least 1
million sentences available. With all three FAST-
TEXT-based models, we see a drastic improvement
from 0-2% up to 20-35% when the amount of data
is increased, however the Fast+DP model has this
increase with less data, which may indicate that
dependency information is useful in the lower re-
source setting.

For 100 thousand sentences, we do see some im-
provement, but with a P@5 of less than 2%, it is
clear that none of the embedding methods tested
are capable of providing embeddings of a high
enough quality to allow for a decent unsupervised
alignment.

While the inclusion of sub-word information
via FASTTEXT outperforms the dependency-based
embeddings alone, the two are not mutually exclu-
sive: it is feasible to train a variant of FASTTEXT
that uses contexts based on dependency relations to
get the best of both worlds. From simple concate-
nation, the Fast+DP hybrid embeddings proved
useful for cases where only 100-400 thousand sen-
tences per language were available.

Table 5 shows the resulting BLEU scores for



FASTTEXT and the two previously described hy-
brid models.'''? With at least 400 thousand sen-
tences available, we see that the non-hybrid model
and the Fast+Reg hybrid perform similarly, but
the Fast+DP hybrid performs worse than the other
two. With only 100 thousand sentences available,
both hybrid models perform better than t