@inproceedings{wang-fu-2020-item,
title = "Item-based Collaborative Filtering with {BERT}",
author = "Wang, Tian and
Fu, Yuyangzi",
editor = "Malmasi, Shervin and
Kallumadi, Surya and
Ueffing, Nicola and
Rokhlenko, Oleg and
Agichtein, Eugene and
Guy, Ido",
booktitle = "Proceedings of the 3rd Workshop on e-Commerce and NLP",
month = jul,
year = "2020",
address = "Seattle, WA, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.ecnlp-1.8",
doi = "10.18653/v1/2020.ecnlp-1.8",
pages = "54--58",
abstract = "In e-commerce, recommender systems have become an indispensable part of helping users explore the available inventory. In this work, we present a novel approach for item-based collaborative filtering, by leveraging BERT to understand items, and score relevancy between different items. Our proposed method could address problems that plague traditional recommender systems such as cold start, and {``}more of the same{''} recommended content. We conducted experiments on a large-scale real-world dataset with full cold-start scenario, and the proposed approach significantly outperforms the popular Bi-LSTM model.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="wang-fu-2020-item">
<titleInfo>
<title>Item-based Collaborative Filtering with BERT</title>
</titleInfo>
<name type="personal">
<namePart type="given">Tian</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yuyangzi</namePart>
<namePart type="family">Fu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 3rd Workshop on e-Commerce and NLP</title>
</titleInfo>
<name type="personal">
<namePart type="given">Shervin</namePart>
<namePart type="family">Malmasi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Surya</namePart>
<namePart type="family">Kallumadi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nicola</namePart>
<namePart type="family">Ueffing</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Oleg</namePart>
<namePart type="family">Rokhlenko</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eugene</namePart>
<namePart type="family">Agichtein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ido</namePart>
<namePart type="family">Guy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Seattle, WA, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In e-commerce, recommender systems have become an indispensable part of helping users explore the available inventory. In this work, we present a novel approach for item-based collaborative filtering, by leveraging BERT to understand items, and score relevancy between different items. Our proposed method could address problems that plague traditional recommender systems such as cold start, and “more of the same” recommended content. We conducted experiments on a large-scale real-world dataset with full cold-start scenario, and the proposed approach significantly outperforms the popular Bi-LSTM model.</abstract>
<identifier type="citekey">wang-fu-2020-item</identifier>
<identifier type="doi">10.18653/v1/2020.ecnlp-1.8</identifier>
<location>
<url>https://aclanthology.org/2020.ecnlp-1.8</url>
</location>
<part>
<date>2020-07</date>
<extent unit="page">
<start>54</start>
<end>58</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Item-based Collaborative Filtering with BERT
%A Wang, Tian
%A Fu, Yuyangzi
%Y Malmasi, Shervin
%Y Kallumadi, Surya
%Y Ueffing, Nicola
%Y Rokhlenko, Oleg
%Y Agichtein, Eugene
%Y Guy, Ido
%S Proceedings of the 3rd Workshop on e-Commerce and NLP
%D 2020
%8 July
%I Association for Computational Linguistics
%C Seattle, WA, USA
%F wang-fu-2020-item
%X In e-commerce, recommender systems have become an indispensable part of helping users explore the available inventory. In this work, we present a novel approach for item-based collaborative filtering, by leveraging BERT to understand items, and score relevancy between different items. Our proposed method could address problems that plague traditional recommender systems such as cold start, and “more of the same” recommended content. We conducted experiments on a large-scale real-world dataset with full cold-start scenario, and the proposed approach significantly outperforms the popular Bi-LSTM model.
%R 10.18653/v1/2020.ecnlp-1.8
%U https://aclanthology.org/2020.ecnlp-1.8
%U https://doi.org/10.18653/v1/2020.ecnlp-1.8
%P 54-58
Markdown (Informal)
[Item-based Collaborative Filtering with BERT](https://aclanthology.org/2020.ecnlp-1.8) (Wang & Fu, ECNLP 2020)
ACL