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Abstract

While there has been substantial research us-
ing adversarial attacks to analyze NLP mod-
els, each attack is implemented in its own
code repository. It remains challenging to de-
velop NLP attacks and utilize them to improve
model performance. This paper introduces
TextAttack, a Python framework for adver-
sarial attacks, data augmentation, and adversar-
ial training in NLP. TextAttack builds at-
tacks from four components: a goal function,
a set of constraints, a transformation, and a
search method. TextAttack’s modular de-
sign enables researchers to easily construct at-
tacks from combinations of novel and exist-
ing components. TextAttack provides im-
plementations of 16 adversarial attacks from
the literature and supports a variety of models
and datasets, including BERT and other trans-
formers, and all GLUE tasks. TextAttack
also includes data augmentation and adver-
sarial training modules for using components
of adversarial attacks to improve model ac-
curacy and robustness. TextAttack is de-
mocratizing NLP: anyone can try data aug-
mentation and adversarial training on any
model or dataset, with just a few lines of
code. Code and tutorials are available at
https://github.com/QData/TextAttack.

1 Introduction
Over the last few years, there has been growing

interest in investigating the adversarial robustness
of NLP models, including new methods for gener-
ating adversarial examples and better approaches
to defending against these adversaries (Alzantot
et al., 2018; Jin et al., 2019; Kuleshov et al., 2018;
Li et al., 2019; Gao et al., 2018; Wang et al., 2019;
Ebrahimi et al., 2017; Zang et al., 2020; Pruthi
et al., 2019). It is difficult to compare these attacks
directly and fairly, since they are often evaluated
on different data samples and victim models. Re-

¬OULJLQaO
¬PeUIecW SeUfRUmaQce b\ Whe acWRU¬¬ → PRVLWLYe (99%)

¬AdYeUVaULaO
¬SSRWOeVV SeUfRUmaQce b\ Whe acWRU → NeJaWLYe (100%)

Figure 1: Adversarial example generated using Jin et al.
(2019)’s TextFooler for a BERT-based sentiment classifier.
Swapping out ”perfect” with synonym ”spotless” completely
changes the model’s prediction, even though the underlying
meaning of the text has not changed.

implementing previous work as a baseline is often
time-consuming and error-prone due to a lack of
source code, and precisely replicating results is
complicated by small details left out of the publica-
tion. These barriers make benchmark comparisons
hard to trust and severely hinder the development
of this field.

To encourage the development of the adversar-
ial robustness field, we introduce TextAttack,
a Python framework for adversarial attacks, data
augmentation, and adversarial training in NLP.

To unify adversarial attack methods into one
system, we decompose NLP attacks into four com-
ponents: a goal function, a set of constraints, a
transformation, and a search method. The attack at-
tempts to perturb an input text such that the model
output fulfills the goal function (i.e., indicating
whether the attack is successful) and the perturba-
tion adheres to the set of constraints (e.g., gram-
mar constraint, semantic similarity constraint). A
search method is used to find a sequence of trans-
formations that produce a successful adversarial
example.

This modular design enables us to easily
assemble attacks from the literature while re-
using components that are shared across attacks.
TextAttack provides clean, readable implemen-
tations of 16 adversarial attacks from the literature.
For the first time, these attacks can be benchmarked,
compared, and analyzed in a standardized setting.
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Figure 2: Main features of TextAttack.

TextAttack’s design also allows researchers to
easily construct new attacks from combinations
of novel and existing components. In just a few
lines of code, the same search method, transfor-
mation and constraints used in Jin et al. (2019)’s
TextFooler can be modified to attack a transla-
tion model with the goal of changing every word
in the output.
TextAttack is directly integrated with Hug-

gingFace’s transformers and nlp libraries. This
allows users to test attacks on models and datasets.
TextAttack provides dozens of pre-trained
models (LSTM, CNN, and various transformer-
based models) on a variety of popular datasets.
Currently TextAttack supports a multitude of
tasks including summarization, machine transla-
tion, and all nine tasks from the GLUE benchmark.
TextAttack also allows users to provide their
own models and datasets.

Ultimately, the goal of studying adversarial at-
tacks is to improve model performance and robust-
ness. To that end, TextAttack provides easy-
to-use tools for data augmentation and adversarial
training. TextAttack’s Augmenter class uses
a transformation and a set of constraints to produce
new samples for data augmentation. Attack recipes
are re-used in a training loop that allows models to
train on adversarial examples. These tools make it
easier to train accurate and robust models.

Uses for TextAttack include1:
1All can be done in < 5 lines of code. See A.1.

• Benchmarking and comparing NLP attacks
from previous works on standardized models
& datasets.

• Fast development of NLP attack methods by re-
using abundant available modules.

• Performing ablation studies on individual com-
ponents of proposed attacks and data augmenta-
tion methods.

• Training a model (CNN, LSTM, BERT,
RoBERTa, etc.) on an augmented dataset.

• Adversarial training with attacks from the litera-
ture to improve a model’s robustness.

2 The TextAttack Framework
TextAttack aims to implement attacks which,

given an NLP model, find a perturbation of an in-
put sequence that satisfies the attack’s goal and
adheres to certain linguistic constraints. In this
way, attacking an NLP model can be framed as a
combinatorial search problem. The attacker must
search within all potential transformations to find
a sequence of transformations that generate a suc-
cessful adversarial example.

Each attack can be constructed from four com-
ponents:

1. A task-specific goal function that determines
whether the attack is successful in terms of
the model outputs.
Examples: untargeted classification, targeted
classification, non-overlapping output, mini-
mum BLEU score.

2

https://github.com/huggingface/transformers/
https://github.com/huggingface/nlp/
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2. A set of constraints that determine if a per-
turbation is valid with respect to the original
input.
Examples: maximum word embedding dis-
tance, part-of-speech consistency, grammar
checker, minimum sentence encoding cosine
similarity.

3. A transformation that, given an input, gener-
ates a set of potential perturbations.
Examples: word embedding word swap, the-
saurus word swap, homoglyph character sub-
stitution.

4. A search method that successively queries
the model and selects promising perturbations
from a set of transformations.
Examples: greedy with word importance rank-
ing, beam search, genetic algorithm.

See A.2 for a full explanation of each goal func-
tion, constraint, transformation, and search method
that’s built-in to TextAttack.

3 Developing NLP Attacks with
TextAttack

TextAttack is available as a Python package
installed from PyPI, or via direct download from
GitHub. TextAttack is also available for use
through our demo web app, displayed in Figure 3.

Python users can test attacks by creating and
manipulating Attack objects. The command-line
API offers textattack attack, which allows
users to specify attacks from their four components
or from a single attack recipe and test them on
different models and datasets.
TextAttack supports several different output

formats for attack results:
• Printing results to stdout.
• Printing to a text file or CSV.
• Printing attack results to an HTML table.
• Writing a table of attack results to a visualization

server, like Visdom or Weights & Biases.
3.1 Benchmarking Existing Attacks with

Attack Recipes
TextAttack’s modular design allows us to

implement many different attacks from past work
in a shared framework, often by adding only one
or two new components. Table 1 categorizes 16
attacks based on their goal functions, constraints,
transformations and search methods.

All of these attacks are implemented as ”at-
tack recipes” in TextAttack and can be bench-
marked with just a single command. See A.3

Figure 3: Screenshot of TextAttack’s web interface run-
ning the TextBugger black-box attack (Li et al., 2019).

for a comparison between papers’ reported at-
tack results and the results achieved by running
TextAttack.

3.2 Creating New Attacks by Combining
Novel and Existing Components

As is clear from Table 1, many components are
shared between NLP attacks. New attacks often re-
use components from past work, adding one or two
novel pieces. TextAttack allows researchers to
focus on the generation of new components rather
than replicating past results. For example, Jin et al.
(2019) introduced TextFooler as a method for
attacking classification and entailment models. If
a researcher wished to experiment with applying
TextFooler’s search method, transformations,
and constraints to attack translation models, all they
need is to implement a translation goal function in
TextAttack. They would then be able to plug
in this goal function to create a novel attack that
could be used to analyze translation models.

3.3 Evaluating Attacks on TextAttack’s
Pre-Trained Models

As of the date of this submission, TextAttack
provides users with 82 pre-trained models, includ-
ing word-level LSTM, word-level CNN, BERT, and
other transformer based models pre-trained on var-
ious datasets provided by HuggingFace nlp. Since
TextAttack is integrated with the nlp library, it
can automatically load the test or validation data
set for the corresponding pre-trained model. While
the literature has mainly focused on classification
and entailment, TextAttack’s pretrained mod-
els enable research on the robustness of models
across all GLUE tasks.

3
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Attack Recipe Goal
Function

Constraints Transformation Search Method

bae

(Garg and
Ramakrishnan, 2020)

Untargeted
Classification

USE sentence encoding
cosine similarity

BERT Masked Token
Prediction

Greedy-WIR

bert-attack

(Li et al., 2020)
Untargeted
Classification

USE sentence encoding
cosine similarity,
Maximum number of
words perturbed

BERT Masked Token
Prediction (with
subword expansion)

Greedy-WIR

deepwordbug

(Gao et al., 2018)
{Untargeted,
Targeted}
Classification

Levenshtein edit
distance

{Character Insertion,
Character Deletion,
Neighboring Character
Swap, Character
Substitution}*

Greedy-WIR

alzantot,

fast-alzantot

(Alzantot et al., 2018;
Jia et al., 2019)

Untargeted
{Classification,
Entailment}

Percentage of words
perturbed, Language
Model perplexity, Word
embedding distance

Counter-fitted word
embedding swap

Genetic
Algorithm

iga

(Wang et al., 2019)
Untargeted
{Classification,
Entailment}

Percentage of words
perturbed, Word
embedding distance

Counter-fitted word
embedding swap

Genetic
Algorithm

input-reduction

(Feng et al., 2018)
Input
Reduction

Word deletion Greedy-WIR

kuleshov

(Kuleshov et al., 2018)
Untargeted
Classification

Thought vector encoding
cosine similarity,
Language model
similarity probability

Counter-fitted word
embedding swap

Greedy word
swap

hotflip (word swap)
(Ebrahimi et al., 2017)

Untargeted
Classification

Word Embedding Cosine
Similarity,
Part-of-speech match,
Number of words
perturbed

Gradient-Based Word
Swap

Beam search

morpheus

(Tan et al., 2020)
Minimum
BLEU Score

Inflection Word Swap Greedy search

pruthi

(Pruthi et al., 2019)
Untargeted
Classification

Minimum word length,
Maximum number of
words perturbed

{Neighboring Character
Swap, Character
Deletion, Character
Insertion,
Keyboard-Based
Character Swap}*

Greedy search

pso

(Zang et al., 2020)
Untargeted
Classification

HowNet Word Swap Particle Swarm
Optimization

pwws

(Ren et al., 2019)
Untargeted
Classification

WordNet-based
synonym swap

Greedy-WIR
(saliency)

seq2sick

(black-box)
(Cheng et al., 2018)

Non-
overlapping
output

Counter-fitted word
embedding swap

Greedy-WIR

textbugger

(black-box)
(Li et al., 2019)

Untargeted
Classification

USE sentence encoding
cosine similarity

{Character Insertion,
Character Deletion,
Neighboring Character
Swap, Character
Substitution}*

Greedy-WIR

textfooler

(Jin et al., 2019)
Untargeted
{Classification,
Entailment}

Word Embedding
Distance, Part-of-speech
match, USE sentence
encoding cosine
similarity

Counter-fitted word
embedding swap

Greedy-WIR

Table 1: TextAttack attack recipes categorized within our framework: search method, transformation, goal function,
constraints. All attack recipes include an additional constraint which disallows the replacement of stopwords. Greedy search
with Word Importance Ranking is abbreviated as Greedy-WIR.
* indicates a combination of multiple transformations

4
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4 Utilizing TextAttack to Improve
NLP Models

4.1 Evaluating Robustness of Custom Models
TextAttack is model-agnostic - meaning it

can run attacks on models implemented in any deep
learning framework. Model objects must be able
to take a string (or list of strings) and return an
output that can be processed by the goal function.
For example, machine translation models take a list
of strings as input and produce a list of strings as
output. Classification and entailment models return
an array of scores. As long as the user’s model
meets this specification, the model is fit to use with
TextAttack.

4.2 Model Training
TextAttack users can train standard LSTM,

CNN, and transformer based models, or a user-
customized model on any dataset from the nlp li-
brary using the textattack train command.
Just like pre-trained models, user-trained models
are compatible with commands like textattack
attack and textattack eval.

4.3 Data Augmentation
While searching for adversarial examples,

TextAttack’s transformations generate pertur-
bations of the input text, and apply constraints to
verify their validity. These tools can be reused to
dramatically expand the training dataset by intro-
ducing perturbed versions of existing samples. The
textattack augment command gives users
access to a number of pre-packaged recipes for
augmenting their dataset. This is a stand-alone
feature that can be used with any model or train-
ing framework. When using TextAttack’s mod-
els and training pipeline, textattack train

--augment automatically expands the dataset be-
fore training begins. Users can specify the fraction
of each input that should be modified and how
many additional versions of each example to create.
This makes it easy to use existing augmentation
recipes on different models and datasets, and is a
great way to benchmark new techniques.

Figure 4 shows empirical results we obtained us-
ing TextAttack’s augmentation. Augmentation
with TextAttack immediately improves the per-
formance of a WordCNN model on small datasets.

4.4 Adversarial Training
With textattack train --attack, at-

tack recipes can be used to create new training

Figure 4: Performance of the built-in WordCNNmodel on the
rotten tomatoes dataset with increasing training set size.
Data augmentation recipes like EasyDataAugmenter

(EDA, (Wei and Zou, 2019)) and Embedding are most help-
ful when working with very few samples. Shaded regions
represent 95% confidence intervals over N = 5 runs.

sets of adversarial examples. After training for a
number of epochs on the clean training set, the at-
tack generates an adversarial version of each input.
This perturbed version of the dataset is substituted
for the original, and is periodically regenerated ac-
cording to the model’s current weaknesses. The
resulting model can be significantly more robust
against the attack used during training. Table 2
shows the accuracy of a standard LSTM classifier
with and without adversarial training against differ-
ent attack recipes implemented in TextAttack.

5 TextAttack Under the Hood
TextAttack is optimized under-the-hood to

make implementing and running adversarial attacks
simple and fast.

AttackedText. A common problem with im-
plementations of NLP attacks is that the original
text is discarded after tokenization; thus, the trans-
formation is performed on the tokenized version
of the text. This causes issues with capitalization
and word segmentation. Sometimes attacks swap a
piece of a word for a complete word (for example,
transforming ‘‘aren’t" into ‘‘aren’too").

To solve this problem, TextAttack stores
each input as a AttackedText object which
contains the original text and helper meth-
ods for transforming the text while retaining
tokenization. Instead of strings or tensors,

5
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Attacked By
Trained Against - deepwordbug textfooler pruthi hotflip bae

baseline (early stopping) 77.30% 23.46% 2.23% 59.01% 64.57% 25.51%
deepwordbug (20 epochs) 76.38% 35.07% 4.78% 57.08% 65.06% 27.63%
deepwordbug (75 epochs) 73.16% 44.74% 13.42% 58.28% 66.87% 32.77%
textfooler (20 epochs) 61.85% 40.09% 29.63% 52.60% 55.75% 39.36%

Table 2: The default LSTM model trained on 3k samples from the sst2 dataset. The baseline uses early stopping on a clean
training set. deepwordbug and textfooler attacks are used for adversarial training. ‘Accuracy Under Attack‘ on the eval
set is reported for several different attack types.

classes in TextAttack operate primarily on
AttackedText objects. When words are added,
swapped, or deleted, an AttackedText can
maintain proper punctuation and capitalization.
The AttackedText also contains implementa-
tions for common linguistic functions like splitting
text into words, splitting text into sentences, and
part-of-speech tagging.

Caching. Search methods frequently encounter
the same input at different points in the search.
In these cases, it is wise to pre-store values to
avoid unnecessary computation. For each input
examined during the attack, TextAttack caches
its model output, as well as the whether or not
it passed all of the constraints. For some search
methods, this memoization can save a significant
amount of time.2

6 Related Work
We draw inspiration from the Transformers

library (Wolf et al., 2019) as an example of a
well-designed Natural Language Processing library.
Some of TextAttack’s models and tokenizers
are implemented using Transformers.
cleverhans (Papernot et al., 2018) is a library

for constructing adversarial examples for computer
vision models. Like cleverhans, we aim to
provide methods that generate adversarial exam-
ples across a variety of models and datasets. In
some sense, TextAttack strives to be a solution
like cleverhans for the NLP community. Like
cleverhans, attacks in TextAttack all im-
plement a base Attack class. However, while
cleverhans implements many disparate attacks
in separate modules, TextAttack builds attacks
from a library of shared components.

There are some existing open-source libraries re-
lated to adversarial examples in NLP. Trickster
proposes a method for attacking NLP models based
on graph search, but lacks the ability to ensure

2Caching alone speeds up the genetic algorithm of Alzantot
et al. (2018) by a factor of 5.

that generated examples satisfy a given constraint
(Kulynych et al., 2018). TEAPOT is a library for
evaluating adversarial perturbations on text, but
only supports the application of ngram-based com-
parisons for evaluating attacks on machine transla-
tion models (Michel et al., 2019). Most recently,
AllenNLP Interpret includes functionality
for running adversarial attacks on NLP models, but
is intended only for the purpose of interpretability,
and only supports attacks via input-reduction or
greedy gradient-based word swap (Wallace et al.,
2019). TextAttack has a broader scope than any
of these libraries: it is designed to be extendable to
any NLP attack.

7 Conclusion
We presented TextAttack, an open-source

framework for testing the robustness of NLP mod-
els. TextAttack defines an attack in four mod-
ules: a goal function, a list of constraints, a trans-
formation, and a search method. This allows us to
compose attacks from previous work from these
modules and compare them in a shared environ-
ment. These attacks can be reused for data aug-
mentation and adversarial training. As new at-
tacks are developed, we will add their components
to TextAttack. We hope TextAttack helps
lower the barrier to entry for research into robust-
ness and data augmentation in NLP. 3
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