@inproceedings{bornstein-etal-2020-corefi,
title = "{C}o{R}efi: A Crowd Sourcing Suite for Coreference Annotation",
author = "Bornstein, Ari and
Cattan, Arie and
Dagan, Ido",
editor = "Liu, Qun and
Schlangen, David",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
month = oct,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.emnlp-demos.27",
doi = "10.18653/v1/2020.emnlp-demos.27",
pages = "205--215",
abstract = "Coreference annotation is an important, yet expensive and time consuming, task, which often involved expert annotators trained on complex decision guidelines. To enable cheaper and more efficient annotation, we present CoRefi, a web-based coreference annotation suite, oriented for crowdsourcing. Beyond the core coreference annotation tool, CoRefi provides guided onboarding for the task as well as a novel algorithm for a reviewing phase. CoRefi is open source and directly embeds into any website, including popular crowdsourcing platforms. CoRefi Demo: aka.ms/corefi Video Tour: aka.ms/corefivideo Github Repo: \url{https://github.com/aribornstein/corefi}",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="bornstein-etal-2020-corefi">
<titleInfo>
<title>CoRefi: A Crowd Sourcing Suite for Coreference Annotation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ari</namePart>
<namePart type="family">Bornstein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Arie</namePart>
<namePart type="family">Cattan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ido</namePart>
<namePart type="family">Dagan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-10</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Qun</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Schlangen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Coreference annotation is an important, yet expensive and time consuming, task, which often involved expert annotators trained on complex decision guidelines. To enable cheaper and more efficient annotation, we present CoRefi, a web-based coreference annotation suite, oriented for crowdsourcing. Beyond the core coreference annotation tool, CoRefi provides guided onboarding for the task as well as a novel algorithm for a reviewing phase. CoRefi is open source and directly embeds into any website, including popular crowdsourcing platforms. CoRefi Demo: aka.ms/corefi Video Tour: aka.ms/corefivideo Github Repo: https://github.com/aribornstein/corefi</abstract>
<identifier type="citekey">bornstein-etal-2020-corefi</identifier>
<identifier type="doi">10.18653/v1/2020.emnlp-demos.27</identifier>
<location>
<url>https://aclanthology.org/2020.emnlp-demos.27</url>
</location>
<part>
<date>2020-10</date>
<extent unit="page">
<start>205</start>
<end>215</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T CoRefi: A Crowd Sourcing Suite for Coreference Annotation
%A Bornstein, Ari
%A Cattan, Arie
%A Dagan, Ido
%Y Liu, Qun
%Y Schlangen, David
%S Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations
%D 2020
%8 October
%I Association for Computational Linguistics
%C Online
%F bornstein-etal-2020-corefi
%X Coreference annotation is an important, yet expensive and time consuming, task, which often involved expert annotators trained on complex decision guidelines. To enable cheaper and more efficient annotation, we present CoRefi, a web-based coreference annotation suite, oriented for crowdsourcing. Beyond the core coreference annotation tool, CoRefi provides guided onboarding for the task as well as a novel algorithm for a reviewing phase. CoRefi is open source and directly embeds into any website, including popular crowdsourcing platforms. CoRefi Demo: aka.ms/corefi Video Tour: aka.ms/corefivideo Github Repo: https://github.com/aribornstein/corefi
%R 10.18653/v1/2020.emnlp-demos.27
%U https://aclanthology.org/2020.emnlp-demos.27
%U https://doi.org/10.18653/v1/2020.emnlp-demos.27
%P 205-215
Markdown (Informal)
[CoRefi: A Crowd Sourcing Suite for Coreference Annotation](https://aclanthology.org/2020.emnlp-demos.27) (Bornstein et al., EMNLP 2020)
ACL
- Ari Bornstein, Arie Cattan, and Ido Dagan. 2020. CoRefi: A Crowd Sourcing Suite for Coreference Annotation. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 205–215, Online. Association for Computational Linguistics.