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Abstract
End-to-end task-oriented dialogue systems
aim to generate system responses directly from
plain text inputs. There are two challenges for
such systems: one is how to effectively incor-
porate external knowledge bases (KBs) into
the learning framework; the other is how to
accurately capture the semantics of dialogue
history. In this paper, we address these two
challenges by exploiting the graph structural
information in the knowledge base and in the
dependency parsing tree of the dialogue. To ef-
fectively leverage the structural information in
dialogue history, we propose a new recurrent
cell architecture which allows representation
learning on graphs. To exploit the relations
between entities in KBs, the model combines
multi-hop reasoning ability based on the graph
structure. Experimental results show that the
proposed model achieves consistent improve-
ment over state-of-the-art models on two dif-
ferent task-oriented dialogue datasets.

1 Introduction

Task-oriented dialogue systems aim to help user
accomplish specific tasks via natural language inter-
faces such as restaurant reservation, hotel booking
and weather forecast. There are many commer-
cial applications of this kind (e.g. Amazon Alexa,
Google Home, and Apple Siri) which make our life
more convenient. Figure 1 illustrates such an exam-
ple where a customer is asking for the information
about restaurants. By querying the knowledge base
(KB), the agent aims to provide the correct restau-
rant entities from the KB to satisfy the customer
in a natural language form. Hence, the ability to
understand the dialogue history, and to retrieve
relevant information from the KB is essential in
task-oriented dialogue systems.

One approach for designing task-oriented dia-
logue systems is the pipeline approach (Williams
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Customer:  I’m looking for a moderately priced Polish restaurant.

Agent:        I’m sorry but there aren’t any Polish restaurants nearby.

Customer:  Can you please check for a Turkish restaurant?

Agent:        Efes Restaurant serves Turkish food with moderate price. 

Customer:  May I have the address for Efes Restaurant?
Agent:        Yes, the address for Efes Restaurant is 30 King Street.
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Figure 1: An example dialogue in the restaurant book-
ing domain. The top part is knowledge base (KB) infor-
mation that represented by a graph and the bottom part
is the conversation between a customer and the agent.
Our aim is to predict the agent responses given KB in-
formation and the customer utterances.

and Young, 2007; Lee et al., 2009; Young et al.,
2013), but it suffers from the difficulty in credit
assignment and adaption to new domains. Another
popular approach is the end-to-end models (Ser-
ban et al., 2016; Wen et al., 2017; Williams et al.,
2017; Zhao et al., 2017; Serban et al., 2017), which
directly map the dialogue history to the output re-
sponses. This approach has attracted more attention
in the research community recently as it alleviates
the drawbacks of the pipeline approach. However,
end-to-end dialogue models usually suffer from in-
effective use of knowledge bases due to the lack of
appropriate framework to handle KB data.

To mitigate this issue, recent end-to-end dialogue
studies (Eric et al., 2017; Madotto et al., 2018)
employ memory networks (Weston et al., 2015;
Sukhbaatar et al., 2015) to support the learning over
KB, and have achieved promising results via inte-
grating memory with copy mechanisms (Gulcehre
et al., 2016; Eric and Manning, 2017). By using
memory, they assume that the underlying structure
of KB is linear since memory can be viewed as a
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list structure. As a result, the relationships between
entities are not captured. However, since KB is
naturally a graph structure (nodes are entities and
edges are relations between entities). By overlook-
ing such relationships, the model fails to capture
substantial information embedded in the KB in-
cluding the semantics of the entities which may
significantly impact the accuracy of results. More-
over, structural knowledge such as dependency re-
lationships has recently been investigated on some
tasks (e.g., relation extraction) (Peng et al., 2017;
Song et al., 2018) and shown to be effective in
the model’s generalizability. However, such depen-
dency relationships (essentially also graph struc-
ture) have not been explored in dialogue systems,
again missing great potential for improvements.

With the above insight, we propose a novel
graph-based end-to-end task-oriented dialogue
model (GraphDialog) aimed to exploit the graph
knowledge both in dialogue history and KBs. Un-
like traditional RNNs such as LSTM (Hochreiter
and Schmidhuber, 1997) and GRU (Cho et al.,
2014), we design a novel recurrent unit (Section
3.1.2) that allows multiple hidden states as inputs
at each timestep such that the dialogue history can
be encoded with graph structural information. The
recurrent unit employs a masked attention mecha-
nism to enable variable input hidden states at each
timestep. Moreover, We incorporate a graph struc-
ture (Section 3.2) to handle the external KB infor-
mation and perform multi-hop reasoning on the
graph to retrieve KB entities.

Overall, the contributions of this paper are sum-
marized as follows:

• We propose a novel graph-based end-to-end
dialogue model for effectively incorporat-
ing the external knowledge bases into task-
oriented dialogue systems.

• We further propose a novel recurrent cell ar-
chitecture to exploit the graph structural in-
formation in the dialogue history. We also
combine the multi-hop reasoning ability with
graph to exploit the relationships between en-
tities in the KB.

• We evaluate the proposed model on two real-
world task-oriented dialogue datasets (i.e.,
SMD and MultiWOZ 2.1). The results show
that our model outperforms the state-of-the-
art models consistently.

2 Related Work

Task-oriented dialogue system has been a long-
standing studied topic (Williams and Young, 2007;
Lee et al., 2009; Huang et al., 2020b) and can be
integrated into many practical applications such as
virtual assistant (Sun et al., 2016, 2017). Tradition-
ally, task-oriented dialogue systems are built in the
pipeline approach, which consists of four essen-
tial components: natural language understanding
(Chen et al., 2016), dialogue state tracking (Lee and
Stent, 2016; Zhong et al., 2018; Wu et al., 2019a),
policy learning (Su et al., 2016; Peng et al., 2018;
Su et al., 2018) and natural language generation
(Sharma et al., 2017; Chen et al., 2019; Huang et al.,
2020a). Another recent approach is the end-to-end
models (Wu et al., 2018; Lei et al., 2018), which di-
rectly map the user utterances to responses without
heavy annotations. Bordes et al. (2017) apply end-
to-end memory networks (Sukhbaatar et al., 2015)
for task-oriented dialogues and shown that end-to-
end models are promising on the tasks. To produce
more flexible responses, several generative models
are proposed (Zhao et al., 2017; Serban et al., 2016).
They formulate the response generation problem as
a translation task and apply sequence-to-sequence
(Seq2Seq) models to generate responses. Seq2Seq
models have shown to be effective in language
modeling but they struggle to incorporate external
KB into responses. To mitigate this issue, Eric
and Manning (2017) has enhanced the Seq2Seq
model by adding copy mechanism. Madotto et al.
(2018) combines the idea of pointer with memory
networks and obtained improved performance. Wu
et al. (2019b) incorporates global pointer mecha-
nism and achieved improved performance. Our
study differs from those works in that we exploit
the powerful graph information both contained in
the dialogue history and in the KBs to effectively
incorporate KBs into dialogue systems.

3 Proposed Model

Our proposed model consists of three components:
an encoder (Section 3.1), a decoder (Section 3.3)
and a knowledge graph with multi-hop reasoning
ability (Section 3.2). Formally, let X = {x1,...,xn}
be a sequence of tokens, where each token xi ∈
X corresponds to a word in the dialogue history.
We first obtain a dialogue graph Ĝ (Section 3.1.1),
which is the dependency parsing graph of the sen-
tences in the dialogue history X, as the input of
the encoder. The encoder then learns a fixed-length
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Figure 2: Overview of the proposed architecture. (a) Graph Encoder, top is forward graph and bottom is backward
graph. (b) Decoder and Knowledge Graph with multi-hop reasoning mechanism. (c) Self-Attention Mechanism.

vector as the encoding of the dialogue history based
on Ĝ, which is then fed to the decoder for hidden
state initialization. The knowledge graph adopts
another graph G = {V,E} to store and retrieve the
external knowledge data (Section 3.2.1), where
V denotes the entities and E denotes the edges.
The decoder generates the system response Y =
{y1,...,ym} token-by-token either by copying en-
tities from graph G via querying the knowledge
graph or by generating tokens from vocabularies.
Figure 2 illustrates the overall architecture of the
proposed model. In the following sections, we
describe each component in detail.

3.1 Graph Encoder

3.1.1 Dialogue Graph
To enable learning semantic rich representations
of words with various relationships, such as adja-
cency and dependency relations, we first use the
off-the-shelf tool spacy1 to extract the dependency
relations among the words in the dialogue history X.
Figure 3 gives an example of the dependency pars-
ing result. The bi-directional edges among words
allow information flow both from dependents to
heads and from heads to dependents. The intu-
ition is that the representation learning of the head
words should be allowed being influenced by the
dependent words and vice versa, thus allowing the
learning process to capture the mutual relationships
between the head words and the dependent words
to provide richer representation.

We compose the dialogue graph by combining
the obtained dependency relations with the sequen-
tial relations (i.e., Next and Pre) among words,
which serves as the input to the graph encoder. To
further support bi-directional representation learn-
ing, we split the obtained dialogue graph into two

1https://spacy.io/

Figure 3: An example of dialogue graph.

Figure 4: Overview of the proposed recurrent unit.

parts: the forward graph (from left to right) and the
backward graph (from right to left).

3.1.2 Recurrent Cell Architecture
The recurrent cell architecture (Figure 4) is the
core computing unit of the graph encoder, and is
used to compute the hidden state of each word in
the obtained dialogue graph. The cell traverse the
words in the dialogue graph sequentially according
to the word order in the dialogue history. Next, we
show how to compute the cell hidden state ht at
timestep t.

Let us define xt as the input word representation
at timestep t. P(t) = {p1,p2,. . . ,pk} is the set of
precedent words for xt where each pi ∈ P(t) de-
notes a word in the dialogue graph that connects to
xt, and k is the total number of the precedents of xt.
H = {h1,h2,. . . ,hk} is a set of hidden states where
each element hj ∈ H denotes the hidden state of
the j-th predecessor pj ∈ P(t).

The input of the cell consists of two parts: the
input word vector xt, and the predecessor hidden
states H. First, we loop over the k hidden states

https://spacy.io/
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in H and compute a reset gate for each of them.
Specifically, we compute rj for the j-th hidden
state using:

rj = σ (Wrxt + Urhj) (1)

where σ is the logistic sigmoid function, xt and
hj are the current input and the hidden state of the
j-th predecessor at timestep t respectively. Wr and
Ur are parameters which will be learned. We then
compute a candidate hidden state h̃t using:

h̃t = φ

Wnxt +
1

k

k∑
j=1

rj ∗ (Unhj)

 (2)

where φ is the hyperbolic tangent function, k is the
number of predecessors of word xt, Wn and Un

are the learnable weight matrices. Intuitively, h̃t is
the contextualized representation of current input
xt.

Next, we combine the obtained candidate hidden
state h̃t with the predecessor hidden states H, and
use an masked attention mechanism (Equation 6) to
aggregate them together to yield the output hidden
state ht at timestep t. To obtain sufficient expres-
sive power, we first apply linear transformations to
the input xt and the hidden states hj ∈ H using:

x
′
t =Wzxt (3)

h
′
j = Uzhj (4)

where Wz , Uz are parameters which are
learned, t is the current timestep. We denote
H
′
={h′1,h

′
2,. . . ,h

′
k} as the transformed set of hid-

den states. Then we add the previously ob-
tained candidate hidden state h̃t into the trans-
formed set of hidden states H

′
and obtain

H
′′
={h′1,h

′
2,. . . ,h

′
k,h̃t}. The intuition is that the

output hidden state depends on both the history
information (h

′
1 to h

′
k) and the current input (h̃t).

Then we perform attention mechanism by using
the hidden states H

′′
as keys and the current in-

put xt as query. Intuitively, different inputs (e.g.
different predecessors in H

′′
) should have differ-

ent impacts on the output hidden state ht, and we
expect our model to capture that. However, the
inputs may have different number of predecessors
at different timesteps. To handle this, inspired by
(Vaswani et al., 2017), we employ an masked at-
tention mechanism to learn the importance of each
predecessor at every timestep, thus avoiding the
pad information affecting the learning process. We
compute the attention using:

ej = vTφ
(
x
′
t + h

′
j

)
(5)

αj = softmax ([ej ]m) (6)

where v is a learnable parameter, h
′
j is the j-th vec-

tor in H
′′
, softmax(zi)=ezi /

∑
j e

zj , αj denotes
the attention weight on the j-th vector in H

′′
, [·]m

denotes the mask operation. In our implementation,
we simply set the number to negative infinity if
the j-th hidden state corresponds to a pad token.
Finally, we compute the weighted sum to obtain
the cell output hidden state ht at timestep t using:

ht =
k+1∑
j=1

αjh
′
j (7)

Intuitively, the reset gate controls the informa-
tion flow from the multiple predecessors to the
hidden state of current timestep. If a precedent
word is more correlated to the current input word,
then it is expected to let the information of the
precedent word flow through the gate to affect the
representation of current timestep.

3.1.3 Bi-directional Representation
To obtain a bi-directional representation for the di-
alogue history, we use the same cell architecture
(Section 3.1.2) to loop over the forward graph and
backward graph separately, and compute a forward

representation
→
hn and a backward representation

←
hn, respectively. Then we concatenate them to-
gether to serve as the final representation of dia-

logue history hen=[
→
hn;
←
hn], which will become a

part of the inputs to the decoder.

3.2 Multi-hop Reasoning Mechanism over
Knowledge Graph

A straightforward way to explore the graph infor-
mation in KB is to represent the KB as a graph
structure, and then query the graph using attention
mechanism with the decoder hidden states. How-
ever, our preliminary experiments didn’t show a
good performance using this approach. We conjec-
ture that it may be due to the poor reasoning ability
of this method. To address this issue, we extend
the graph with multi-hop reasoning mechanism,
which aimed to strengthen the reasoning ability
over graph as well as to capture the graph struc-
tural information between entities via self-attention.
We call it knowledge graph module in the following
sections.
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Formally, the knowledge graph module con-
tains two sets of trainable parameters C =
{C1,C2,. . . ,CK+1}, where each Ck is an embed-
ding matrix that maps tokens to vector representa-
tions, and V = {V 1,V 2,. . . ,V K+1}, where each V k

is a weight vector for computing self-attention co-
efficients, and K is the maximum number of hops.

Now we describe how to compute the output vec-
tor of the knowledge graph. The model loops over
K hops on an input graph. At each hop k, a query
vector qk is employed as the reading head. First,
the model uses an embedding layer Ck to obtain
the continuous vector representations of each node
i in the graph as Ck

i , where Ck
i =Ck(ni) and ni is

the i-th node in the graph. Then we perform self-
attention mechanism on the nodes and compute the
attention coefficients using:

eij = ϕ

((
V k
)T

[Ck
i ||Ck

j ]

)
(8)

where ϕ is the LeakyReLU activation function
(with negative input slope α = 0.2), V k is the
parametrized weight vector of the attention mecha-
nism at hop k, Ck

i and Ck
j are the node vectors for

the i-th and j-th node in the graph at hop k, and ‖
is the concatenation operation. We then normalize
the coefficients of each node i with respect to all its
first-order neighbors using the softmax function:

αij =
exp(eij)∑

k∈Ni
exp(eik)

(9)

where Ni is the first-order neighbors of node i (in-
cluding i), exp is the exponential function.

Then we update the representation of each node
i by a weighted sum of its neighbors in Ni using:(

Ck
i

)′
=
∑
j∈Ni

αijC
k
j (10)

Next, the query vector qk is used to attend to the up-
dated nodes in the graph and compute the attention
weights for each node i at hop k using:

pki = softmax

((
qk
)T (

Ck
i

)′)
(11)

To obtain the output of the knowledge graph, we
apply the same self-attention mechanism (Equa-
tions 8 and 9) and update strategy (Equation 10)
to the node representation Ck+1

i . We use Ck+1

here since the adjacent weighted tying strategy is
adopted. The updated node representation for out-

put is denoted as
(
Ck+1
i

)′
. Once obtained, the

model reads out the graph ok by the weighted sum
over it using:

ok =
∑
i

pki

(
Ck+1
i

)′
(12)

Then the query vector qk is updated for the next
hop using qk+1 = qk + ok. The final output of the
knowledge graph is oK , which will become a part
of the inputs to the decoder.

3.2.1 Graph Construction
In practice, dialogue systems usually use KBs
(mostly in a relational database format) to provide
external knowledge. We have converted the orig-
inal relational database into a graph structure to
exploit the relation information between KB enti-
ties. First, we find all the entities in the relational
database as the nodes of the graph. Then we assign
an edge to a pair of entities if there exists relation-
ship between them according to the records in the
relational database. Thus we can obtain the graph
structured external knowledge.

3.3 Decoder

We use a standard Gated Recurrent Unit (GRU)
(Cho et al., 2014) as the decoder to generate the
system response word-by-word. The initial hidden
state h0 consists of two parts: the graph encoder
output and the knowledge graph output. We take
the output hidden state of the graph encoder hen as
the initial query vector q0 to attend to the knowl-
edge graph and obtain the output oK . The initial
hidden state h0 is then computed using:

h0 = [hen||oK ] (13)

At each decoder timestep t, the GRU takes the
previously generated word ŷt−1 and the previous
hidden state ht−1 as the input and generates a new
hidden state ht using:

ht = GRU (ŷt−1, ht−1) (14)

Next, we follow (Wu et al., 2019b) that the de-
coder learns to generate a sketch response that the
entities in the response are replaced with certain
tags. The tags are obtained from the provided on-
tologies in the training data. The hidden state ht
are used for two purposes. The first one is to gen-
erate a vocabulary distribution Pvocab over all the
words in the vocabulary using:

Pvocab = softmax (Woht) (15)
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where Wo is the learnable parameter. The second
one is to query the knowledge graph to generate a
graph distribution Pgraph over all the nodes in the
graph. We use the attention weights at the last hop
of the knowledge graph pKt as Pgraph.

At each timestep t, if the generated word from
Pvocab (the word has the maximum posterior prob-
ability) is a tag, then the decoder choose to copy
from the graph entities that has the largest attention
value according to Pgraph. Otherwise, the decoder
will generate the target word from Pvocab. During
training, all the parameters are jointly learned via
minimizing the sum of two cross-entropy losses:
one is between Pvocab and yt ∈ Y, and the other
is between Pgraph and GLabel

t , where GLabel
t is the

node id that corresponds to the current output yt.

4 Experiments

4.1 Dataset

To validate the efficacy of our proposed model, we
evaluate it on two public multi-turn task-oriented
diaglogue datasets: Stanford multi-domain dia-
logue (SMD) (Eric et al., 2017) and MultiWOZ 2.1
(Eric et al., 2019). The SMD is a human–human
dataset for in-car navigation task. It includes three
distinct task domains: point-of-interest navigation,
calendar scheduling and weather information re-
trieval. The MultiWOZ 2.1 dataset is a recently
released human–human dialogue corpus with much
larger data size and richer linguistic expressions
that make it a more challenging benchmark for end-
to-end task-oriented dialogue modeling. It consists
of seven distinct task domains: restaurant, hotel, at-
traction, train, hospital, taxi and police. We select
four domains (restaurant, hotel, attraction, train)
to test our model since the other three domains (po-
lice, taxi, hospital) lack KB information which is
essential to our task. We will make our code and
data publicly available for further study. To the
best of our knowledge, we are the first to evaluate
end-to-end task-oriented dialogue models on Mul-
tiWOZ 2.1. The train/validation/test sets of these
two datasets are split in advance by the providers.

4.2 Training Details

We implement our model2 in Tensorflow and is
trained on NVIDIA GeForce RTX 2080 Ti. We
use grid search to find the best hyper-parameters
for our model over the validation set (use BLEU as

2Code and data are available at: https://github.
com/shiquanyang/GraphDialog

Metrics SMD MultiWOZ 2.1

Avg. Turns per dialog 5.25 13.46
Avg. Tokens per turn 8.02 13.13
Total number of turns 12732 113556

Vocabulary 1601 23689
Train dialogs 2425 8438
Val dialogs 302 1000
Test dialogs 304 1000

Table 1: Dataset statistics for SMD and MultiWOZ 2.1.

criterion for both datasets). We randomly initialize
all the embeddings in our implementation. The em-
bedding size is selected between [16,512], which
is also equivalent to the RNN hidden state (includ-
ing the encoder and the decoder). We also use
dropout for regularization on both the encoder and
the decoder to avoid over-fitting and the dropout
rate is set between [0.1,0.5]. We use Adam op-
timizer (Kingma and Ba, 2015) to accelerate the
convergence with a learning rate chosen between
[1e−3,1e−4]. We simply use a greedy strategy to
search for the target word in the decoder without
advanced techniques like beam-search.

4.3 Evaluation Metrics

We use two common evaluation metrics in dialogue
studies including BLEU (Papineni et al., 2002) (us-
ing Moses multi-bleu.perl script) and En-
tity F1 (Eric et al., 2017; Madotto et al., 2018) for
evaluations.

4.4 Effect of Models

We compare our model with several existing mod-
els: standard sequence-to-sequence (Seq2Seq)
models with and without attention (Luong et al.,
2015), pointer to unknown (Ptr-Unk, (Gulcehre
et al., 2016)), GraphLSTM (Peng et al., 2017),
BERT (Devlin et al., 2019), Mem2Seq (Madotto
et al., 2018) and GLMP (Wu et al., 2019b). Note
that the results we listed in Table 2 for GLMP
is different from the original paper, since we re-
implement their model in Tensorflow according to
their released Pytorch code for fair comparison.

Stanford Multi-domain Dialogue. Table 2 has
shown the results on SMD dataset. Our proposed
model achieves a consistent improvement over all
the baselines with the highest BLEU score 13.6
and 57.4% entity F1 score. The performance gain
in BLEU score suggests that the generation error
in the decoder has been reduced. The improvement
on entity F1 indicates that our model can retrieve

https://github.com/shiquanyang/GraphDialog
https://github.com/shiquanyang/GraphDialog
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Model S2S S2S + Attn Ptr-Unk GraphLSTM BERT Mem2Seq GLMP GraphDialog
K=1 K=3 K=6

BLEU 8.4 9.3 8.3 10.3 9.13 12.6 12.2 12.96 13.66 12.74

Entity F1 10.3 19.9 22.7 50.8 49.6 33.4 55.1 56.14 57.42 55.90

Schedule F1 9.7 23.4 26.9 69.9 57.4 49.3 67.3 70.96 71.90 71.84
Weather F1 14.1 25.6 26.7 46.6 47.5 32.8 54.1 56.89 59.68 54.36

Navigation F1 7.0 10.8 14.9 43.2 46.8 20.0 48.4 48.37 48.58 47.55

Table 2: Evaluation on SMD dataset. Human, rule-based and KV Retrieval Net results are reported from (Eric et al.,
2017), which are not directly comparable since the problem is simplified to canonicalized forms. K denotes the
maximum number of hops for knowledge graph. Ours achieves highest BLEU and entity F1 score over baselines.

Model S2S S2S + Attn Ptr-Unk GraphLSTM BERT Mem2Seq GLMP GraphDialog
K=1 K=3 K=6

BLEU 2.5 3.0 2.3 3.4 3.9 4.1 4.3 5.47 6.17 5.14

Entity F1 1.3 2.1 2.5 4.7 4.1 3.2 6.7 9.56 11.28 8.74

Restaurant F1 1.6 2.2 2.3 9.8 7.3 2.9 11.4 15.27 15.95 13.25
Hotel F1 1.5 3.4 3.8 2.1 1.6 4.5 3.9 7.54 10.79 7.05

Attraction F1 0.8 1.4 1.7 7.2 8.4 2.1 9.4 5.78 14.12 7.89
Travel F1 0.2 0.7 0.9 1.8 2.1 1.5 3.5 3.41 4.39 3.53

Table 3: Evaluation on MultiWOZ 2.1 dataset. Ours achieves highest BLEU and entity F1 score over baselines.

entities from the external knowledge data more
accurately than those baselines. We also conduct
comparisons with BERT to validate the effective-
ness of our proposed model. Specifically, we use
the bert-base-uncased model (due to GPU memory
limit) from huggingface library3 as our encoder to
encode the dialogue history and the remaining parts
are the same as our model. We then fine-tune BERT
on our dialogue dataset. We can find that our mode
significantly outperforms the fine-tuned BERT by
a large margin which further demonstrates the ef-
fectiveness of our proposed model. We conjecture
that the reasons may lie in two aspects. First, the
context of the corpus used for pretraining BERT
differs from our dialogue dataset. Secondly, the
model complexity of BERT may cause overfitting
issue on small-scale datasets like SMD etc.

MultiWOZ 2.1. Table 3 shows the results on a
more complex dataset MultiWOZ 2.1. Our model
outperforms all the other baselines by a large mar-
gin both in entity F1 and BLEU score, which con-
firms our model has a better generalization ability
than those baselines. One may find that the entity
F1 and BLEU score has a huge gap between Multi-
WOZ 2.1 and SMD. This performance degradation
phenomenon has also been observed by other dia-
logue works (Budzianowski et al., 2018) which im-
plies that the MultiWOZ corpus is much more chal-

3https://github.com/huggingface

lenging than the SMD dataset for dialogue tasks.
Ablation Study. Table 4 shows the contribu-

tions of each components in our model. Ours with-
out graph encoder means that we do not use the
dependency relations information and the proposed
recurrent cell architecture. We simply use a bi-
directional GRU to serve as the encoder and the
other parts of the model remain unchanged. We
can observe that our model without the graph en-
coder has a 1.6% absolute value loss (over 25% in
ratio) in BLEU score and a 1.1% absolute value
loss (9.8% in ratio) in entity F1 on MultiWOZ 2.1,
which suggests that the overall quality of the gener-
ated sentences are better improved by our graph en-
coder. On the other hand, ours without knowledge
graph means that we do not use the graph struc-
ture to store and retrieve the external knowledge
data. Instead we use memory networks (Sukhbaatar
et al., 2015) that has been shown useful to handle
the knowledge base similar to (Wu et al., 2019b).
We can find a significant entity F1 drop (3.8% in
absolute value and 33.9% in ratio) on MultiWOZ
2.1, which verifies the superiority of the proposed
graph-based module with multi-hop reasoning abil-
ity in retrieving the correct entities, even compared
to the strong memory-based baselines.

Model Training Time. We also compare the
training time of GraphDialog with those baselines.
GraphDialog is about 3 times faster than BERT
since its model complexity is smaller. The number

https://github.com/huggingface
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Figure 5: Knowledge graph attention visualization when generating responses in the SMD navigation do-
main. Based on the question “Where is a nearby parking garage?”, the generated response of our model is
“palo alto garage is 1 miles away”. Specifically, the attention results at each generation timestep for the knowl-
edge graph information of this example are shown in (a), (b), (c) and (d) respectively. The color and size of the
nodes represent their attention weights. The darker and bigger the nodes are, the larger their attention weights are.
Our model successfully learns to attend to the correct KB entities (i.e., palo alto garage and 1 miles at genera-
tion timesteps 0 and 2) which have the highest attention, and the model copies them to serve as the output words.
During timesteps 1 and 3, the model generates output words (i.e., is and away) from the vocabulary.

SMD MultiWOZ 2.1

Model BLEU Entity F1(All) BLEU Entity F1(All)

GraphDialog 13.66(-) 57.42(-) 6.17(-) 11.28(-)
GraphDialog w/o Graph Encoder 12.35(-1.31) 56.61(-0.81) 4.57(-1.60) 10.13(-1.15)
GraphDialog w/o Knowledge Graph 13.13(-0.53) 55.28(-2.14) 5.35(-0.82) 7.41(-3.87)

Table 4: Model ablation study: Effects of Graph Encoder and Knowledge Graph. Number in the parentheses means
the absolute value gap between the full version and the ablation one on corresponding metrics.

Edge Path Distance

Dataset 1 ≥ 2 ≥ 10 ≥ 15

SMD 52.82% 33.68% 10.61% 2.89%

MultiWOZ 2.1 50.29% 35.41% 11.26% 3.04%

Table 5: Edge path distance distribution on different
datasets.

of parameters for GraphDialog is almost 90% less
than BERT, which also saves space for model stor-
age. GraphDialog is slower than GLMP, which is
expected as it needs to encode more information.
However, the gap of the training time is up to 69%,
and we can complete the whole training process
within one day which seems reasonable.

4.5 Analysis and Discussion
Why does dependency relations help? We have
conducted in-depth analyses from the edge path
distance perspective. Table 5 shows the edge path
distance distribution in the dialogue graph (Section
3.1.1) on both SMD and MultiWOZ 2.1. The edge
path distance is defined as the the number of words
between the head word and the tail word along the
linear word sequence plus one. For example, for
the sentence “There is a supermarket”, the edge
distance of the “Next” edge between “There” and

“is” is 1, the edge path distance of the “nsubj” edge
between “is” and “supermarket” is 2. We can find
that although many edges have small edge path
distances, there are still a considerable number of
edges with relatively large distances, which could
encourage more direct information flow between
distant words in the input. This may partly explain
the benefits of using information such as depen-
dency relations in encoding the dialogue history.

Attention Visualization. To further understand
the model dynamics, we analyze the attention
weights of the knowledge graph module to show its
reasoning process. Figure 5 has shown an example
of the attention distribution over all the nodes at the
last hop of the knowledge graph. Based on the ques-
tion “Where is a nearby parking garage?” asked
by the user, the generated response of our model
is “palo alto garage is 1 miles away”, and the gold
answer is “The nearest one is palo alto garage, it’s
just 1 miles away”. We can find that our model
has successfully learned to copy the correct entities
(i.e., palo alto garage at timestep 0 and 1 miles at
timestep 2) from the knowledge graph.

Error Analysis. To inspire future improve-
ments, we also inspect the generated responses
manually. We find that the model tends to omit
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entities when the responses contain multiple KB
entities. Besides, about 10% of the generated re-
sponses contain duplicate KB entities. For exam-
ple, “The temperature in New York on Monday is
100F, 100F”. This may be attributed to the training
of GRU in the decoder, and we aim to solve the
problem in future work.

5 Conclusion

In this work, we present a novel graph-based end-
to-end model for task-oriented dialogue systems.
The model leverages the graph structural informa-
tion in dialogue history via the proposed recurrent
cell architecture to capture the semantics of dia-
logue history. The model further exploits the re-
lationships between entities in the KB to achieve
better reasoning ability by combining the multi-hop
reasoning ability with graph.

We empirically show that our model outperforms
the state-of-the-art models on two real-world task-
oriented dialogue datasets. Our model may also be
applied to end-to-end open-domain chatbots since
the goal is to generate responses given inputs and
external knowledge, which is what our model can
do. We will explore this direction in future work.
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Rojas-Barahona, Stefan Ultes, David Vandyke,
Tsung-Hsien Wen, and Steve Young. 2016. On-
line active reward learning for policy optimisation
in spoken dialogue systems. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics.

Shang-Yu Su, Xiujun Li, Jianfeng Gao, Jingjing Liu,
and Yun-Nung Chen. 2018. Discriminative deep
dyna-q: Robust planning for dialogue policy learn-
ing. CoRR, abs/1808.09442.

Sainbayar Sukhbaatar, Arthur Szlam, Jason Weston,
and Rob Fergus. 2015. End-to-end memory net-
works. In Proceedings of the 28th International
Conference on Neural Information Processing Sys-
tems.

Yu Sun, Nicholas Jing Yuan, Yingzi Wang, Xing Xie,
Kieran McDonald, and Rui Zhang. 2016. Contex-
tual intent tracking for personal assistants. In Pro-
ceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Min-
ing.

Yu Sun, Nicholas Jing Yuan, Xing Xie, Kieran McDon-
ald, and Rui Zhang. 2017. Collaborative intent pre-
diction with real-time contextual data. ACM Trans-
actions on Information Systems (TOIS), 35(4):1–33.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Proceedings of the 31st International
Conference on Neural Information Processing Sys-
tems.

Tsung-Hsien Wen, David Vandyke, Nikola Mrkšić,
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