@inproceedings{zanzotto-etal-2020-kermit,
title = "{KERMIT}: Complementing Transformer Architectures with Encoders of Explicit Syntactic Interpretations",
author = "Zanzotto, Fabio Massimo and
Santilli, Andrea and
Ranaldi, Leonardo and
Onorati, Dario and
Tommasino, Pierfrancesco and
Fallucchi, Francesca",
editor = "Webber, Bonnie and
Cohn, Trevor and
He, Yulan and
Liu, Yang",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.emnlp-main.18",
doi = "10.18653/v1/2020.emnlp-main.18",
pages = "256--267",
abstract = "Syntactic parsers have dominated natural language understanding for decades. Yet, their syntactic interpretations are losing centrality in downstream tasks due to the success of large-scale textual representation learners. In this paper, we propose KERMIT (Kernel-inspired Encoder with Recursive Mechanism for Interpretable Trees) to embed symbolic syntactic parse trees into artificial neural networks and to visualize how syntax is used in inference. We experimented with KERMIT paired with two state-of-the-art transformer-based universal sentence encoders (BERT and XLNet) and we showed that KERMIT can indeed boost their performance by effectively embedding human-coded universal syntactic representations in neural networks",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zanzotto-etal-2020-kermit">
<titleInfo>
<title>KERMIT: Complementing Transformer Architectures with Encoders of Explicit Syntactic Interpretations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Fabio</namePart>
<namePart type="given">Massimo</namePart>
<namePart type="family">Zanzotto</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andrea</namePart>
<namePart type="family">Santilli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leonardo</namePart>
<namePart type="family">Ranaldi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dario</namePart>
<namePart type="family">Onorati</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pierfrancesco</namePart>
<namePart type="family">Tommasino</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Francesca</namePart>
<namePart type="family">Fallucchi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Bonnie</namePart>
<namePart type="family">Webber</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Trevor</namePart>
<namePart type="family">Cohn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yulan</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Syntactic parsers have dominated natural language understanding for decades. Yet, their syntactic interpretations are losing centrality in downstream tasks due to the success of large-scale textual representation learners. In this paper, we propose KERMIT (Kernel-inspired Encoder with Recursive Mechanism for Interpretable Trees) to embed symbolic syntactic parse trees into artificial neural networks and to visualize how syntax is used in inference. We experimented with KERMIT paired with two state-of-the-art transformer-based universal sentence encoders (BERT and XLNet) and we showed that KERMIT can indeed boost their performance by effectively embedding human-coded universal syntactic representations in neural networks</abstract>
<identifier type="citekey">zanzotto-etal-2020-kermit</identifier>
<identifier type="doi">10.18653/v1/2020.emnlp-main.18</identifier>
<location>
<url>https://aclanthology.org/2020.emnlp-main.18</url>
</location>
<part>
<date>2020-11</date>
<extent unit="page">
<start>256</start>
<end>267</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T KERMIT: Complementing Transformer Architectures with Encoders of Explicit Syntactic Interpretations
%A Zanzotto, Fabio Massimo
%A Santilli, Andrea
%A Ranaldi, Leonardo
%A Onorati, Dario
%A Tommasino, Pierfrancesco
%A Fallucchi, Francesca
%Y Webber, Bonnie
%Y Cohn, Trevor
%Y He, Yulan
%Y Liu, Yang
%S Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)
%D 2020
%8 November
%I Association for Computational Linguistics
%C Online
%F zanzotto-etal-2020-kermit
%X Syntactic parsers have dominated natural language understanding for decades. Yet, their syntactic interpretations are losing centrality in downstream tasks due to the success of large-scale textual representation learners. In this paper, we propose KERMIT (Kernel-inspired Encoder with Recursive Mechanism for Interpretable Trees) to embed symbolic syntactic parse trees into artificial neural networks and to visualize how syntax is used in inference. We experimented with KERMIT paired with two state-of-the-art transformer-based universal sentence encoders (BERT and XLNet) and we showed that KERMIT can indeed boost their performance by effectively embedding human-coded universal syntactic representations in neural networks
%R 10.18653/v1/2020.emnlp-main.18
%U https://aclanthology.org/2020.emnlp-main.18
%U https://doi.org/10.18653/v1/2020.emnlp-main.18
%P 256-267
Markdown (Informal)
[KERMIT: Complementing Transformer Architectures with Encoders of Explicit Syntactic Interpretations](https://aclanthology.org/2020.emnlp-main.18) (Zanzotto et al., EMNLP 2020)
ACL