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Abstract

Aspect Sentiment Triplet Extraction (ASTE)
is the task of extracting the triplets of target
entities, their associated sentiment, and opin-
ion spans explaining the reason for the senti-
ment. Existing research efforts mostly solve
this problem using pipeline approaches, which
break the triplet extraction process into several
stages. Our observation is that the three el-
ements within a triplet are highly related to
each other, and this motivates us to build a
joint model to extract such triplets using a se-
quence tagging approach. However, how to ef-
fectively design a tagging approach to extract
the triplets that can capture the rich interac-
tions among the elements is a challenging re-
search question. In this work, we propose the
first end-to-end model with a novel position-
aware tagging scheme that is capable of jointly
extracting the triplets. Our experimental re-
sults on several existing datasets show that
jointly capturing elements in the triplet using
our approach leads to improved performance
over the existing approaches. We also con-
ducted extensive experiments to investigate the
model effectiveness and robustness1.

1 Introduction

Designing effective algorithms that are capable of
automatically performing sentiment analysis and
opinion mining is a challenging and important task
in the field of natural language processing (Pang
and Lee, 2008; Liu, 2010; Ortigosa et al., 2014;
Smailović et al., 2013; Li and Wu, 2010). Recently,
Aspect-based Sentiment Analysis (Pontiki et al.,
2014) or Targeted Sentiment Analysis (Mitchell
et al., 2013) which focuses on extracting target

∗ Equal contribution. Lu Xu is under the Joint PhD Pro-
gram between Alibaba and Singapore University of Technol-
ogy and Design. The work was done when Hao Li was a PhD
student in Singapore University of Technology and Design.

1We release our code at https://github.com/
xuuuluuu/Position-Aware-Tagging-for-ASTE

0 +food was so so but excited to see many vegan options

Figure 1: ASTE with targets in bold in solid squares,
their associated sentiment on top, and opinion spans in
dashed boxes. The arc indicates connection between a
target and the corresponding opinion span.

phrases as well as the sentiment associated with
each target, has been receiving much attention. In
this work, we focus on a relatively new task – As-
pect Sentiment Triplet Extraction (ASTE) proposed
by Peng et al. (2019). Such a task is required
to extract not only the targets and the sentiment
mentioned above, but also the corresponding opin-
ion spans expressing the sentiment for each target.
Such three elements: a target, its sentiment and the
corresponding opinion span, form a triplet to be
extracted. Figure 1 presents an example sentence
containing two targets in solid boxes. Each target
is associated with a sentiment, where we use + to
denote the positive polarity, 0 for neutral, and −
for negative. Two opinion spans in dashed boxes
are connected to their targets by arcs. Such opin-
ion spans are important, since they largely explain
the sentiment polarities for the corresponding tar-
gets (Qiu et al., 2011; Yang and Cardie, 2012).

This ASTE problem was basically untouched
before, and the only existing work that we are
aware of (Peng et al., 2019) employs a 2-stage
pipeline approach. At the first stage, they employ a
unified tagging scheme which fuses the target tag
based on the BIOES2 tagging scheme, and sen-
timent tag together. Under such a unified tagging
scheme, they proposed methods based on Long
Short-Term Memory networks (LSTM) (Hochre-
iter and Schmidhuber, 1997), Conditional Random

2BIOES is a common tagging scheme for sequence label-
ing tasks, and BIOES denotes “begin, inside, outside, end
and single” respectively.

https://github.com/xuuuluuu/Position-Aware-Tagging-for-ASTE
https://github.com/xuuuluuu/Position-Aware-Tagging-for-ASTE
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Figure 2: The position-aware tagging scheme for the example instance.

Fields (CRF) (Lafferty et al., 2001) and Graph
Convolutional Networks (GCN) (Kipf and Welling,
2017) to perform sequence labeling to extract tar-
gets with sentiment as well as opinion spans. At
the second stage, they use a classifier based on
Multi-Layer Perceptron (MLP) to pair each target
(containing a sentiment label) with the correspond-
ing opinion span to obtain all the valid triplets.

One important observation is that the three ele-
ments in a triplet are highly related to each other.
Specifically, sentiment polarity is largely deter-
mined by an opinion span as well as the target
and its context, and an opinion span also depends
on the target phrase in terms of wording (e.g., an
opinion span “fresh” usually describes food targets
instead of service). Such an observation implies
that jointly capturing the rich interaction among
three elements in a triplet might be a more effective
approach. However, the BIOES tagging scheme
on which the existing approaches based comes with
a severe limitation for this task: such a tagging
scheme without encoding any positional informa-
tion fails to specify the connection between a target
and its opinion span as well as the rich interactions
among the three elements due to the limited ex-
pressiveness. Specifically, BIOES uses the tag
B or S to represent the beginning of a target. For
example, in the example sentence in Figure 1, “ve-
gan” should be labeled with B, but the tagging
scheme does not contain any information to specify
the position of its corresponding opinion “excited”.
Using such a tagging scheme inevitably leads to
an additional step to connect each target with an
opinion span as the second stage in the pipeline
approach. The skip-chain sequence models (Sutton
and McCallum, 2004; Galley, 2006) are able to cap-
ture interactions between given input tokens which
can be far away from each other. However, they
are not suitable for the ASTE task where the posi-
tions of targets and opinion spans are not explicitly
provided but need to be learned.

Motivated by the above observations, we present

a novel approach that is capable of predicting the
triplets jointly for ASTE. Specifically, we make the
following contributions in this work:
• We present a novel position-aware tagging

scheme that is capable of specifying the struc-
tural information for a triplet – the connection
among the three elements by enriching the
label semantics with more expressiveness, to
address the above limitation.
• We propose a novel approach, JET, to Jointly

Extract the Triplets based on our novel
position-aware tagging scheme. Such an ap-
proach is capable of better capturing inter-
actions among elements in a triplet by com-
puting factorized features for the structural
information in the ASTE task.
• Through extensive experiments, the results

show that our joint approach JET outperforms
baselines significantly.

2 Our Approach

Our objective is to design a model JET to ex-
tract the triplet of Target, Target Sentiment, and
Opinion Span jointly. We first introduce the new
position-aware tagging scheme, followed by the
model architecture. We next present our simple
LSTM-based neural architecture for learning fea-
ture representations, followed by our method to
calculate factorized feature scores based on such
feature representations for better capturing the in-
teractions among elements in a triplet. Finally, we
also discuss a variant of our model.

2.1 Position-Aware Tagging Scheme

To address the limitations mentioned above, we
propose our position-aware tagging scheme by en-
riching expressiveness to incorporate position infor-
mation for a target and the corresponding opinion
span. Specifically, we extend the tag B and tag S
in the BIOES tagging scheme to new tags respec-
tively:

Bε
j,k, S

ε
j,k
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where Bε
j,k with the sub-tag3 B still denotes the be-

ginning of a target, and Sεj,k with the sub-tag S de-
notes a single-word target. Note that ε ∈ {+, 0,−}
denotes the sentiment polarity for the target, and
j, k indicate the position information which are
the distances between the two ends of an opinion
span and the starting position of a target respec-
tively. Here, we use the term “offset” to denote
such position information for convenience. We
keep the other tags I , E, O as is. In a word, we use
sub-tags BIOES for encoding targets, ε for senti-
ment, and offsets for opinion spans under the new
position-aware tagging scheme for the structural
information.

For the example in Figure 1, under the proposed
tagging scheme, the tagging result is given in Fig-
ure 2. The single-word target “food” is tagged with
S0

2,3, implying the sentiment polarity for this target
is neutral (0). Furthermore, the positive offsets 2, 3
indicate that its opinion span is on the right and has
distances of 2 and 3 measured at the left and right
ends respectively, (i.e., “so so”). The second target
is “vegan options” with its first word tagged with
B+
−4,−4 and the last word tagged with E, implying

the sentiment polarity is positive (+). Furthermore,
the negative offsets −4,−4 indicate that the opin-
ion span “excited” appears on the left of the target,
and has distances of 4 and 4 measured at the left
and right ends respectively, (i.e., “vegan”).

Our proposed position-aware tagging scheme
has the following theoretical property:

Theorem 2.1. There is a one-to-one correspon-
dence between a tag sequence and a combination
of aspect sentiment triplets within the sentence as
long as the targets do not overlap with one another,
and each has one corresponding opinion span.4

Proof. For a given triplet, we can use the fol-
lowing process to construct the tag sequence.
First note that the sub-tags of our proposed tags
Bε
j,k, I, O,E, S

ε
j,k, are B, I,O,E, S. The stan-

dard BIOES tagset is capable of extracting all
possible targets when they do not overlap with one
another. Next, for each specified target, the posi-
tion information j, k that specifies the position of
its corresponding opinion span can be attached to
the B (or S) tag, resulting in Bj,k (or Sj,k). Note
that the opinion span can be any span within the

3We define the sub-tags of Bε
j,k, S

ε
j,k as B and S respec-

tively, and the sub-tags of I,O,E as themselves.
4See the supplementary material for detailed statistics on

how often this condition is satisfied.

sentence when j, k are not constrained. Finally, we
assign each extracted target its sentiment polarity
ε by attaching it to the tag B (or S), resulting in
Bε
j,k (or Sεj,k). This construction process is unique

for each combination of triplets. Similarly, given a
tag sequence, we can reverse the above process to
recover the combination of triplets.

We would like to highlight that our proposed
position-aware tagging scheme is capable of han-
dling some special cases where the previous ap-
proach is unable to. For example, in the sentence

“The salad is cheap with fresh salmon”, there are two
triplets, (“salad”, “cheap with fresh salmon”, pos-
itive)5 and (“salmon”, “fresh”, positive). The pre-
vious approach such as (Peng et al., 2019), which
was based on a different tagging scheme, will not
be able to handle such a case where the two opinion
spans overlap with one another.

2.2 Our JET Model

We design our novel JET model with CRF (Laf-
ferty et al., 2001) and Semi-Markov CRF (Sarawagi
and Cohen, 2004) based on our position-aware tag-
ging scheme. Such a model is capable of encoding
and factorizing both token-level features for targets
and segment-level features for opinion spans.

Given a sentence x with length n, we aim to
produce the desired output sequence y based on
the position-aware tagging scheme. The probability
of y is defined as:

p(y|x) =
exp (s(x,y))∑

y′∈Yx,M
exp(s(x,y′))

(1)

where s(x,y) is a score function defined over the
sentence x and the output structure y, and Yx,M

represents all the possible sequences under our
position-aware tagging scheme with the offset con-
straint M , indicating the maximum absolute value
of an offset. The score s(x,y) is defined as:

s(x,y) =
n∑
i=0

ψȳi,ȳi+1 +
n∑
i=1

Φyi(x, i) (2)

where ȳi ∈ {B, I,O,E, S} returns the sub-tag
of yi, ψȳi,ȳi+1 represents the transition score: the
weight of a “transition feature” – a feature de-
fined over two adjacent sub-tags ȳi and ȳi+1, and
Φyi(x, i) represents the factorized feature score
with tag yi at position i. In our model, the calcula-
tion of transition score ψȳi,ȳi+1 is similar to the one

5We use the format (target, opinion spans, sentiment).
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ei

BiLSTM

hi = [
−→
hi;
←−
hi] ga,b

ft(hi) fs(gi+j,i+k;
←−
hi) fo(gi+j,i+k) fr(j, k)

0+ −B I O E S

Figure 3: Neural Module for Feature Score

in CRF6. For the factorized feature score Φyi(x, i),
we will explain computation details based on a sim-
ple LSTM-based neural network in the following
two subsections. Such a factorized feature score
is able to encode both token-level features as in
standard CRF, segment-level features as in Semi-
Markov CRF as well as the interaction among a
target, its sentiment and an opinion span in a triplet.

2.2.1 Neural Module
We deploy a simple LSTM-based neural architec-
ture for learning features. Given an input token se-
quence x = {x1, x2, · · · , xn} of length n, we first
obtain the embedding sequence {e1, e2, · · · , en}.
As illustrated in Figure 3, we then apply a bi-
directional LSTM on the embedding sequence and
obtain the hidden state hi for each position i, which
could be represented as:

hi = [
−→
hi;
←−
hi] (3)

where
−→
hi and

←−
hi are the hidden states of the for-

ward and backward LSTMs respectively.
Motivated by (Wang and Chang, 2016; Stern

et al., 2017), we calculate the segment representa-
tion ga,b for an opinion span with boundaries of a
and b (both inclusive) as follows:

ga,b = [
−→
h b −

−→
h a−1;

←−
h a −

←−
h b+1] (4)

where
−→
h 0 = 0,

←−
h n+1 = 0 and 1 ≤ a ≤ b ≤ n.

2.2.2 Factorized Feature Score
We explain how to compute the factorized fea-
ture scores (the second part of Equation 2) for the
position-aware tagging scheme based on the neural
architecture described above. Such factorized fea-
ture scores involve 4 types of scores, as illustrated
in the solid boxes appearing in Figure 3 (top).

Basically, we calculate the factorized feature

6We calculate the transition parameters among five sub-
tags BIOES for targets.

score for the tag yi as follows:

Φyi(x, i) = ft(hi)ȳi (5)

where the linear layer ft is used to calculate the
score for local context for targets. Such a linear
layer takes the hidden state hi as the input and re-
turns a vector of length 5, with each value in the
vector indicating the score of the corresponding
sub-tag among BIOES. The subscript ȳi indi-
cates the index of such a sub-tag.

When yi ∈ {Bε
j,k, S

ε
j,k}, we need to calculate 3

additional factorized feature scores for capturing
structural information by adding them to the basic
score as follows:

Φyi(x, i) += (6)

fs([gi+j,i+k;
←−
hi])ε + fo(gi+j,i+k) + fr(j, k)

Note that the subscript of the variable g is repre-
sented as i+j, i+k which are the absolute positions
since j, k are the offsets. We explain such 3 addi-
tional factorized scores appearing in Equation 6.

• fs([gi+j,i+k;
←−
hi])ε calculates the score for the

sentiment. A linear layer fs takes the concate-
nation of the segment representation gi+j,i+k

for an opinion span and the local context
←−
hi

for a target, since we believe that the sentiment
is mainly determined by the opinion span as
well as the target phrase itself. Note that we
only use the backward hidden state

←−
hi here,

because the end position of a target is not avail-
able in the tag and the target phrase appears
on the right of this position i. The linear layer
fs returns a vector of length 3, with each value
representing the score of a certain polarity of
+, 0,−. The subscript ε indicates the index of
such a polarity.
• fo(gi+j,i+k) is used to calculate a score for

an opinion span. A linear layer fo takes the
segment representation gi+j,i+k of an opinion
span and returns one number representing the
score of an opinion span.
• fr(j, k) is used to calculate a score for offsets,

since we believe the offset is an important fea-
ture. A linear layer fr returns one number rep-
resenting the score of offsets j, k which again
are the distances between a target and two
ends of the opinion span. Here, we introduce
the offset embedding wr randomly initialized
for encoding different offsets. Specifically, we
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Dataset 14Rest 14Lap 15Rest 16Rest
#S # + # 0 # - #S # + # 0 # - #S # + # 0 # - #S # + # 0 # -

Train 1266 1692 166 480 906 817 126 517 605 783 25 205 857 1015 50 329
Dev 0,310 404 54 119 219 169 36 141 148 185 11 53 210 252 11 76
Test 0, 492 773 66 155 328 364 63 116 322 317 25 143 326 407 29 78

Table 1: Statistics of 4 datasets. (#S denotes number of sentences, and # +, # 0, # - denote numbers of positive,
neutral and negative triplets respectively.)

0 +food was so so but excited to see many vegan options

S+
4,5O OO O O O O OB0
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Figure 4: The gold tagging sequence of JETo for the
example sentence.

calculate the score as follows7:

fr(j, k) = Wrwr[min (j, k)] + br (7)

where Wr and br are learnable parameters.

2.3 One Target for Multiple Opinion Spans

The approach JET described above allows multiple
targets to point to the same opinion span. One
potential issue is that such an approach is not able
to handle the case where one target is associated
with multiple opinion spans. To remedy such an
issue, we could swap a target and an opinion span
to arrive at a new model as a model variant, since
they are both text spans which are characterized
by their boundaries. Specifically, in such a model
variant, we still use the extended tags Bε

j,k and
Sεj,k, where we use sub-tags BIOES to encode an
opinion span, the offsets j, k for the target and ε for
the sentiment polarity. We use a similar procedure
for the feature score calculation.

To differentiate with our first model, we name
our first model as JETt and such a model variant
as JETo. The superscripts t and o indicate the use
of the sub-tags B and S to encode a target and an
opinion span respectively. Figure 4 presents the
gold tagging sequence of JETo.

2.4 Training and Inference

The loss function L for the training data D is de-
fined as:

L = −
∑

(x,y)∈D

log p(y|x). (8)

The overall model is analogous to that of a neu-
ral CRF (Peng et al., 2009; Do et al., 2010; Lam-
ple et al., 2016); hence the inference and decod-

7We use min (j, k) since we care the offset between the
starting positions of an opinion span and a target.

ing follow standard marginal and MAP inference8

procedures. For example, the prediction of y fol-
lows the Viterbi-like MAP inference procedure
during decoding. Notice that the number of la-
bels at each position under the position-aware tag-
ging scheme is O(M2), since we need to compute
segment representation for text spans of lengths
within M . Hence, the time complexity for infer-
ence is O(nM2). When M � n (empirically, we
found n can be up to 80 in our datasets, and we
set M ∈ [2, 6]), this complexity is better than the
existing work with complexity O(n2) (Peng et al.,
2019).

3 Experiments

3.1 Data

We refine the dataset previously created by Peng
et al. (2019)9. We call our refined dataset ASTE-
Data-V2, and the original version as ASTE-Data-
V110. Note that ASTE-Data-V1 does not contain
cases where one opinion span is associated with
multiple targets. For example, there are two targets,
“service” and “atmosphere”, in the sentence “Best
service and atmosphere”. The opinion span “Best”
is associated with such two targets, resulting in
two triplets. However, we found that not all such
triplets are explicitly annotated in ASTE-Data-V1.
We refine the dataset with these additional missing
triplets in our dataset ASTE-Data-V211.

Table 1 presents the detailed statistics for 4
datasets.12 14Rest, 15Rest, 16Rest are the
datasets of restaurant domain and 14Lap is of
laptop domain. Such datasets were all created
based on the datasets originally released by Se-
mEval (Pontiki et al., 2014, 2015, 2016).

8See the supplementary materials for detailed algorithm.
9https://github.com/xuuuluuu/

SemEval-Triplet-data
10We also report the results on ASTE-Data-V1 in the sup-

plementary material.
11We also remove triplets with sentiment originally labeled

as “conflict” by SemEval.
12See the supplementary material for more statistics.

https://github.com/xuuuluuu/SemEval-Triplet-data
https://github.com/xuuuluuu/SemEval-Triplet-data
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Models 14Rest 14Lap 15Rest 16Rest
Dev F1 P. R. F1 Dev F1 P. R. F1 Dev F1 P. R. F1 Dev F1 P. R. F1

CMLA+ - 39.18 47.13 42.79 - 30.09 36.92 33.16 - 34.56 39.84 37.01 - 41.34 42.10 41.72
RINANTE+ - 31.42 39.38 34.95 - 21.71 18.66 20.07 - 29.88 30.06 29.97 - 25.68 22.30 23.87
Li-unified-R - 41.04 67.35 51.00 - 40.56 44.28 42.34 - 44.72 51.39 47.82 - 37.33 54.51 44.31
Peng et al. (2019) - 43.24 63.66 51.46 - 37.38 50.38 42.87 - 48.07 57.51 52.32 - 46.96 64.24 54.21

JETt (M = 2) 45.67 72.46 32.29 44.68 35.69 57.39 24.31 34.15 42.34 64.81 28.87 39.94 43.27 68.75 38.52 49.38
JETt (M = 3) 50.87 70.02 42.76 53.09 42.34 56.86 31.31 40.38 52.02 59.87 36.91 45.66 52.13 67.22 47.47 55.64
JETt (M = 4) 50.31 69.67 47.38 56.41 45.90 48.77 32.78 39.21 52.50 64.50 40.82 50.00 57.69 64.64 47.67 54.87
JETt (M = 5) 52.41 62.23 48.39 54.44 48.26 54.84 34.44 42.31 54.97 55.67 43.51 48.84 57.83 61.63 48.44 54.25
JETt (M = 6) 53.14 66.76 49.09 56.58 47.68 52.00 35.91 42.48 55.06 59.77 42.27 49.52 58.45 63.59 50.97 56.59

JETo (M = 2) 41.72 66.89 30.48 41.88 36.12 54.34 21.92 31.23 43.39 52.31 28.04 36.51 43.24 63.86 35.41 45.56
JETo (M = 3) 49.41 65.29 41.45 50.71 41.95 58.89 31.12 40.72 48.72 58.28 34.85 43.61 53.36 72.40 47.47 57.34
JETo (M = 4) 51.56 67.63 46.88 55.38 45.66 54.55 35.36 42.91 56.73 58.54 43.09 49.64 58.26 69.81 49.03 57.60
JETo (M = 5) 53.35 71.49 47.18 56.85 45.83 55.98 35.36 43.34 59.57 61.39 40.00 48.44 55.92 66.06 49.61 56.67
JETo (M = 6) 53.54 61.50 55.13 58.14 45.61 53.03 33.89 41.35 60.97 64.37 44.33 52.50 60.90 70.94 57.00 63.21

+ Contextualized Word Representation (BERT)
JETt (M = 6)+ BERT 56.00 63.44 54.12 58.41 50.40 53.53 43.28 47.86 59.86 68.20 42.89 52.66 60.67 65.28 51.95 57.85
JETo (M = 6)+ BERT 56.89 70.56 55.94 62.40 48.84 55.39 47.33 51.04 64.78 64.45 51.96 57.53 63.75 70.42 58.37 63.83

Table 2: Main results on our refined dataset ASTE-Data-V2. The underlined scores indicate the best results on
the dev set, and the highlighted scores are the corresponding test results. The experimental results on the previous
released dataset ASTE-Data-V1 can be found in the supplementary materials.

3.2 Baselines

Our JET approaches are compared with the follow-
ing baselines using pipeline.

• RINANTE+ (Peng et al., 2019) modifies RI-
NANTE (Dai and Song, 2019) which is de-
signed based on LSTM-CRF (Lample et al.,
2016), to co-extract targets with sentiment,
and opinion spans. Such an approach also
fuses mined rules as weak supervision to cap-
ture dependency relations of words in a sen-
tence at the first stage. At the second stage, it
generates all the possible triplets and applies
a classifier based on MLP on such triplets to
determine if each triplet is valid or not.
• CMLA+ (Peng et al., 2019) modifies

CMLA (Wang et al., 2017) which leverages
attention mechanism to capture dependencies
among words, to co-extract targets with senti-
ment, and opinion spans at the first stage. At
the second stage, it uses the same method to
obtain all the valid triplets as RINANTE+.
• Li-unified-R (Peng et al., 2019) modifies

the model (Li et al., 2019) to extract targets
with sentiment, as well as opinion spans re-
spectively based on a customized multi-layer
LSTM neural architecture. At the second
stage, it uses the same method to obtain all
the valid triplets as RINANTE+.
• Peng et al. (2019) proposed an approach mo-

tivated by Li-unified-R to co-extract targets
with sentiment, and opinion spans simultane-
ously. Such an approach also fuses GCN to
capture dependency information to facilitate
the co-extraction. At the second stage, it uses

the same method to obtain all the valid triplets
as RINANTE+.

3.3 Experimental Setup
Following the previous work (Peng et al., 2019),
we use pre-trained 300d GloVe (Pennington et al.,
2014) to initialize the word embeddings. We use
100 as the embedding size of wr (offset embed-
ding). We use the bi-directional LSTM with the
hidden size 300. For experiments with contextu-
alised representation, we adopt the pre-trained lan-
guage model BERT (Devlin et al., 2019). Specifi-
cally, we use bert-as-service (Xiao, 2018) to gen-
erate the contextualized word embedding without
fine-tuning. We use the representation from the last
layer of the uncased version of BERT base model
for our experiments.

Before training, we discard any instance from
the training data that contains triplets with offset
larger than M . We train our model for a maximal
of 20 epochs using Adam (Kingma and Ba, 2014)
as the optimizer with batch size 1 and dropout rate
0.513. We select the best model parameters based
on the best F1 score on the development data and
apply it to the test data for evaluation.

Following the previous works, we report the pre-
cision (P.), recall (R.) and F1 scores for the cor-
rect triplets. Note that a correct triplet requires the
boundary14 of the target, the boundary of the opin-
ion span, and the target sentiment polarity to be all

13See the supplementary materials for experimental details.
We use a different dropout rate 0.7 on the dataset 14Lap
based on preliminary results since the domain is different
from the other 3 datasets.

14We define a boundary as the beginning and ending posi-
tions of a text span.
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correct at the same time.

3.4 Main Results

Table 2 presents the main results, where all the base-
lines as well as our models with different maximum
offsets M are listed. In general, our joint models
JETt and JETo, which are selected based on the
best F1 score on the dev set, are able to outperform
the most competitive baseline of Peng et al. (2019)
on the 4 datasets 14Rest, 15Rest, 16Rest,
and 14Lap. Specifically, the best models selected
from JETt and JETo outperform Peng et al. (2019)
significantly15 on 14Rest and 16Rest datasets
with p < 10−5 respectively. Such results imply that
our joint models JETt and JETo are more capable
of capturing interactions among the elements in
triplets than those pipeline approaches. In addition,
we observe a general trend from the results that the
F1 score increases asM increases on the 4 datasets
when M ≤ 5. We observe that the performance
of JETt and JETo on the dev set of 14Lap drops
when M = 6.

For the dataset 14Rest, JETo(M = 6)
achieves the best results on F1 scores among all the
JETo models. Such a JETo(M = 6) model outper-
forms the strongest baseline Peng et al. (2019) by
nearly 7 F1 points. JETt(M = 6) also achieves a
good performance with 56.58 in terms of F1 score.
Comparing results of our models to baselines, the
reason why ours have better F1 scores is that our
models JETt(M ≥ 4) and JETo(M ≥ 4) both
achieve improvements of more than 15 precision
points, while we maintain acceptable recall scores.
Similar patterns of results on the datasets 14Lap,
15Rest and 16Rest are observed, except that
JETt(M = 5) and JETo(M = 5) achieves the
best F1 score on the dev set of 14Lap. Further-
more, we discover that the performance of both
JETo and JETt on 14Rest and 16Rest datasets
is better than on14Lap and 15Rest datasets.
Such a behavior can be explained by the large dis-
tribution differences of positive, neutral and nega-
tive sentiment between the train and test set of the
14Rest and 16Rest datasets, shown in Table 1.

Furthermore, we also conduct additional experi-
ments on our proposed model with the contextual-
ized word representation BERT. Both JETt (M =
6)+ BERT and JETo (M = 6)+ BERT achieve new state-
of-the-art performance on the four datasets.

15We have conducted significance test using the bootstrap
resampling method (Koehn, 2004).
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Figure 5: F1(%) scores (y-axis) of different lengths
(x-axis) for targets, opinion spans and offsets on the
dataset 14Rest.
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Figure 6: F1 for different evaluation methods.

4 Analysis

4.1 Robustness Analysis

We analyze the model robustness by assessing the
performance on targets, opinion spans and offsets
of different lengths for two models JETt(M =
6)+ BERT and JETo(M = 6)+ BERT on the four
datasets. Figure 5 shows the results on the 14Rest
dataset16. As we can see, JETo(M = 6)+ BERT

is able to better extract triplets with targets of
lengths≤ 3 than JETt(M = 6)+ BERT. Furthermore,
JETo(M = 6)+ BERT achieves a better F1 score for
triplets whose opinion spans are of length 1 and
4. However, JETo(M = 6)+ BERT performs com-
parably to JETt(M = 6)+ BERT for triplets whose
opinion spans are of length 2 and 3. In addi-
tion, JETo(M = 6)+ BERT is able to outperform
JETt(M = 6)+ BERT with offset of length 4 and
above. We also observe that the performance drops
when the lengths of targets, opinion spans and off-
sets are longer. This confirms that modeling the
boundaries are harder when their lengths are longer.
Similar patterns of results are observed on 14Lap,
15Rest, and 16Rest17.

We also investigate the robustness on different
evaluation methods, as presented in Figure 6. T

16See the supplementary material for the statistics of accu-
mulative percentage of different lengths for targets, opinion
spans and offsets.

17See the supplementary material for results on the other 3
datasets.
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Gold Peng et al. (2019) JETt JETo

+
Food is fresh and hot ready to eat

+
Food is fresh and hot ready to eat

+
Food is fresh and hot ready to eat

+
Food is fresh and hot ready to eat

0 +
with a quaint bar and good food

0 +
with a quaint bar and good food

0 +
with a quaint bar and good food

0 +
with a quaint bar and good food

Table 3: Qualitative Analysis

(Target), O (Opinion Span) and S (Sentiment) are
the elements to be evaluated. The subscript p on
the right of an element in the legend denotes “par-
tially correct”. We define two boundaries to be
partially correct if such two boundaries overlap.
(T,O, S) is the evaluation method used for our
main results. (Tp, O, S) requires the boundary of
targets to be partially correct, and the boundary of
opinion spans as well as the sentiment to be exactly
correct. (T,Op, S) requires the boundary of opin-
ion spans to be partially correct, and the boundary
of targets as well as the sentiment to be exactly cor-
rect. The results based on (T,Op, S) yield higher
improvements in terms of F1 points than results
based on (Tp, O, S), compared with (T,O, S) for
JETt(M = 6)+ BERT except on 15Rest. The re-
sults based on (Tp, O, S) yield higher F1 improve-
ments than results based on (T,Op, S), compared
with (T,O, S) for JETo(M = 6)+ BERT except on
15Rest. Such a comparison shows the bound-
aries of opinion spans or target spans may be better
captured when the sub-tags BIOES are used to
model the opinion or target explicitly.

4.2 Qualitative Analysis

To help us better understand the differences among
these models, we present two example sentences
selected from the test data as well as predictions
by Peng et al. (2019), JETt and JETo in Table 3
18. As we can see, there exist 2 triplets in the
gold data in the first example. Peng et al. (2019)
predicts an incorrect opinion span “hot ready” in
the second triplet. JETt only predicts 1 triplet
due to the model’s limitation (JETt is not able to
handle the case of one target connecting to multiple
opinion spans). JETo is able to predict 2 triplets
correctly. In the second example, the gold data
contains two triplets. Peng et al. (2019) is able to
correctly predict all the targets and opinion spans.
However, it incorrectly connects each target to both
two opinion spans. Our joint models JETt and
JETo are both able to make the correct prediction.

18See the supplementary material for more examples.

Model
14Rest 14Lap

JETt JETo JETt JETo

M = 6+ BERT 58.41 62.40 47.86 51.04
+char embedding 59.13 62.23 47.71 51.38
−offset features 55.36 61.24 44.16 49.58
−opinion span features 57.93 62.04 47.66 50.48

15Rest 16Rest
JETt JETo JETt JETo

M = 6+ BERT 52.66 57.53 57.85 63.83
+char embedding 51.28 56.84 57.11 63.95
−offset features 48.74 53.68 52.83 61.72
−opinion span features 51.37 56.92 57.16 62.71

Table 4: Ablation Study (F1)

4.3 Ablation Study
We also conduct an ablation study for JETt(M =
6)+ BERT and JETo(M = 6)+ BERT on dev set of the
4 datasets, presented in Table 4. “+char embed-
ding” denotes concatenating character embedding
into word representation. The results show that
concatenating character embedding mostly has no
much positive impact on the performance, which
we believe is due to data sparsity. “−offset features”
denotes removing fr(j, k) in the feature score cal-
culation, Equation 6. F1 scores drop more on the
JETt(M = 6)+ BERT, this further confirms that mod-
eling the opinion span is more difficult than target.
“−opinion features” denotes removing fo(gi+j,i+k)
in the feature score calculation in Equation 6. F1

scores drop consistently, implying the importance
of such features for opinion spans.

4.4 Ensemble Analysis
As mentioned earlier, JETo is proposed to over-
come the limitation of JETt, and vice versa. We
believe that such two models complement each
other. Hence, we propose two ensemble models
JETo→t and JETt→o to properly merge the results
produced by JETt and JETo. JETo→t merges
results of JETo towards JETt by adding distinct
triplets from JETo to JETt, and analogously for
JETt→o. We discuss how we build the ensemble
models based on the two models JETt and JETo
(with BERT, M = 6). First we call two triplets
are overlap with one another if two targets overlap
and any of their opinions overlap with one another.
The ensemble model JETo→t merges results from
JETo towards JETt. Specifically, within the same
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Dataset Model P. R. F1

14Rest

JETt 63.44 54.12 58.41
JETo 70.56 55.94 62.40
JETo→t 61.28 63.38 62.31
JETt→o 61.10 63.98 62.51

14Lap

JETt 53.53 43.28 47.86
JETo 55.39 47.33 51.04
JETo→t 48.68 51.01 49.82
JETt→o 49.57 53.22 51.33

15Rest

JETt 68.20 42.89 52.66
JETo 64.45 51.96 57.53
JETo→t 61.41 53.81 57.36
JETt→o 61.75 55.26 58.32

16Rest

JETt 65.28 51.95 57.85
JETo 70.42 58.37 63.83
JETo→t 61.94 62.06 62.00
JETt→o 62.50 63.23 62.86

Table 5: Results for Ensemble. We use the models
JETt and JETo (with BERT, M = 6) as base models
for building two ensemble models on 4 datasets.

instance, if a triplet produced by JETo does not
overlap with any triplet produced by JETt, we aug-
ment the prediction space with such an additional
triplet. After going through each triplet produced
by JETo, we regard the expanded predictions as the
output of the ensemble model JETo→t. Similarly,
we merge the result from JETt towards JETo to
obtain the result for the ensemble model JETt→o.

We report results for ensemble models JETo→t
and JETt→o presented in Table 5. As we can see,
on 14Rest, 14Lap and 15Rest, the ensemble
model JETt→o is able to achieve better F1 score
than JETt and JETo. However, such a simple en-
semble approach appears to be less effective on
16Rest. It is worth highlighting that the ensem-
ble models have significant improvements in terms
of recall score. Note that the recall score reflects
the number of gold triplets extracted. Such im-
provement confirms our earlier hypothesis that the
two models largely complement each other.

5 Related Work

ASTE is highly related to another research topic –
Aspect Based Sentiment Analysis (ABSA) (Pontiki
et al., 2014, 2016). Such a research topic focuses
on identifying aspect categories, recognizing aspect
targets as well as the associated sentiment. There
exist a few tasks derived from ABSA. Target ex-
traction (Chernyshevich, 2014; San Vicente et al.,
2015; Yin et al., 2016; Lample et al., 2016; Li et al.,
2018b; Ma et al., 2019) is a task that focuses on
recognizing all the targets which are either aspect
terms or named entities. Such a task is mostly re-
garded as a sequence labeling problem solvable by
CRF-based methods. Aspect sentiment analysis or

targeted sentiment analysis is another popular task.
Such a task either refers to predicting sentiment
polarity for a given target (Dong et al., 2014; Chen
et al., 2017; Xue and Li, 2018; Wang and Lu, 2018;
Wang et al., 2018; Li et al., 2018a; Peng et al., 2018;
Xu et al., 2020) or joint extraction of targets as well
as sentiment associated with each target (Mitchell
et al., 2013; Zhang et al., 2015; Li and Lu, 2017;
Ma et al., 2018; Li and Lu, 2019; Li et al., 2019).
The former mostly relies on different neural net-
works such as self-attention (Liu and Zhang, 2017)
or memory networks (Tang et al., 2016) to gen-
erate an opinion representation for a given target
for further classification. The latter mostly regards
the task as a sequence labeling problem by apply-
ing CRF-based approaches. Another related task
– target and opinion span co-extraction (Qiu et al.,
2011; Liu et al., 2013, 2014, 2015; Wang et al.,
2017; Xu et al., 2018; Dai and Song, 2019) is also
often regarded as a sequence labeling problem.

6 Conclusion

In this work, we propose a novel position-aware tag-
ging scheme by enriching label expressiveness to
address a limitation associated with existing works.
Such a tagging scheme is able to specify the con-
nection among three elements – a target, the target
sentiment as well as an opinion span in an aspect
sentiment triplet for the ASTE task. Based on the
position-aware tagging scheme, we propose a novel
approach JET that is capable of jointly extracting
the aspect sentiment triplets. We also design factor-
ized feature representations so as to effectively cap-
ture the interaction. We conduct extensive experi-
ments and results show that our models outperform
strong baselines significantly with detailed analysis.
Future work includes finding applications of our
novel tagging scheme in other tasks involving ex-
tracting triplets as well as extending our approach
to support other tasks within sentiment analysis.
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