@inproceedings{shmueli-etal-2020-reactive,
title = "{R}eactive {S}upervision: {A} {N}ew {M}ethod for {C}ollecting {S}arcasm {D}ata",
author = "Shmueli, Boaz and
Ku, Lun-Wei and
Ray, Soumya",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.emnlp-main.201",
doi = "10.18653/v1/2020.emnlp-main.201",
pages = "2553--2559",
abstract = "Sarcasm detection is an important task in affective computing, requiring large amounts of labeled data. We introduce reactive supervision, a novel data collection method that utilizes the dynamics of online conversations to overcome the limitations of existing data collection techniques. We use the new method to create and release a first-of-its-kind large dataset of tweets with sarcasm perspective labels and new contextual features. The dataset is expected to advance sarcasm detection research. Our method can be adapted to other affective computing domains, thus opening up new research opportunities.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="shmueli-etal-2020-reactive">
<titleInfo>
<title>Reactive Supervision: A New Method for Collecting Sarcasm Data</title>
</titleInfo>
<name type="personal">
<namePart type="given">Boaz</namePart>
<namePart type="family">Shmueli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lun-Wei</namePart>
<namePart type="family">Ku</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Soumya</namePart>
<namePart type="family">Ray</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)</title>
</titleInfo>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Sarcasm detection is an important task in affective computing, requiring large amounts of labeled data. We introduce reactive supervision, a novel data collection method that utilizes the dynamics of online conversations to overcome the limitations of existing data collection techniques. We use the new method to create and release a first-of-its-kind large dataset of tweets with sarcasm perspective labels and new contextual features. The dataset is expected to advance sarcasm detection research. Our method can be adapted to other affective computing domains, thus opening up new research opportunities.</abstract>
<identifier type="citekey">shmueli-etal-2020-reactive</identifier>
<identifier type="doi">10.18653/v1/2020.emnlp-main.201</identifier>
<location>
<url>https://aclanthology.org/2020.emnlp-main.201</url>
</location>
<part>
<date>2020-11</date>
<extent unit="page">
<start>2553</start>
<end>2559</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Reactive Supervision: A New Method for Collecting Sarcasm Data
%A Shmueli, Boaz
%A Ku, Lun-Wei
%A Ray, Soumya
%S Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)
%D 2020
%8 November
%I Association for Computational Linguistics
%C Online
%F shmueli-etal-2020-reactive
%X Sarcasm detection is an important task in affective computing, requiring large amounts of labeled data. We introduce reactive supervision, a novel data collection method that utilizes the dynamics of online conversations to overcome the limitations of existing data collection techniques. We use the new method to create and release a first-of-its-kind large dataset of tweets with sarcasm perspective labels and new contextual features. The dataset is expected to advance sarcasm detection research. Our method can be adapted to other affective computing domains, thus opening up new research opportunities.
%R 10.18653/v1/2020.emnlp-main.201
%U https://aclanthology.org/2020.emnlp-main.201
%U https://doi.org/10.18653/v1/2020.emnlp-main.201
%P 2553-2559
Markdown (Informal)
[Reactive Supervision: A New Method for Collecting Sarcasm Data](https://aclanthology.org/2020.emnlp-main.201) (Shmueli et al., EMNLP 2020)
ACL