@inproceedings{barkan-etal-2020-within,
title = "Within-Between Lexical Relation Classification",
author = "Barkan, Oren and
Caciularu, Avi and
Dagan, Ido",
editor = "Webber, Bonnie and
Cohn, Trevor and
He, Yulan and
Liu, Yang",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.emnlp-main.284",
doi = "10.18653/v1/2020.emnlp-main.284",
pages = "3521--3527",
abstract = "We propose the novel \textit{Within-Between} Relation model for recognizing lexical-semantic relations between words. Our model integrates relational and distributional signals, forming an effective sub-space representation for each relation. We show that the proposed model is competitive and outperforms other baselines, across various benchmarks.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="barkan-etal-2020-within">
<titleInfo>
<title>Within-Between Lexical Relation Classification</title>
</titleInfo>
<name type="personal">
<namePart type="given">Oren</namePart>
<namePart type="family">Barkan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Avi</namePart>
<namePart type="family">Caciularu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ido</namePart>
<namePart type="family">Dagan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Bonnie</namePart>
<namePart type="family">Webber</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Trevor</namePart>
<namePart type="family">Cohn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yulan</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We propose the novel Within-Between Relation model for recognizing lexical-semantic relations between words. Our model integrates relational and distributional signals, forming an effective sub-space representation for each relation. We show that the proposed model is competitive and outperforms other baselines, across various benchmarks.</abstract>
<identifier type="citekey">barkan-etal-2020-within</identifier>
<identifier type="doi">10.18653/v1/2020.emnlp-main.284</identifier>
<location>
<url>https://aclanthology.org/2020.emnlp-main.284</url>
</location>
<part>
<date>2020-11</date>
<extent unit="page">
<start>3521</start>
<end>3527</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Within-Between Lexical Relation Classification
%A Barkan, Oren
%A Caciularu, Avi
%A Dagan, Ido
%Y Webber, Bonnie
%Y Cohn, Trevor
%Y He, Yulan
%Y Liu, Yang
%S Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)
%D 2020
%8 November
%I Association for Computational Linguistics
%C Online
%F barkan-etal-2020-within
%X We propose the novel Within-Between Relation model for recognizing lexical-semantic relations between words. Our model integrates relational and distributional signals, forming an effective sub-space representation for each relation. We show that the proposed model is competitive and outperforms other baselines, across various benchmarks.
%R 10.18653/v1/2020.emnlp-main.284
%U https://aclanthology.org/2020.emnlp-main.284
%U https://doi.org/10.18653/v1/2020.emnlp-main.284
%P 3521-3527
Markdown (Informal)
[Within-Between Lexical Relation Classification](https://aclanthology.org/2020.emnlp-main.284) (Barkan et al., EMNLP 2020)
ACL
- Oren Barkan, Avi Caciularu, and Ido Dagan. 2020. Within-Between Lexical Relation Classification. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 3521–3527, Online. Association for Computational Linguistics.