@inproceedings{limkonchotiwat-etal-2020-domain,
title = "Domain Adaptation of {T}hai Word Segmentation Models using Stacked Ensemble",
author = "Limkonchotiwat, Peerat and
Phatthiyaphaibun, Wannaphong and
Sarwar, Raheem and
Chuangsuwanich, Ekapol and
Nutanong, Sarana",
editor = "Webber, Bonnie and
Cohn, Trevor and
He, Yulan and
Liu, Yang",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.emnlp-main.315/",
doi = "10.18653/v1/2020.emnlp-main.315",
pages = "3841--3847",
abstract = "Like many Natural Language Processing tasks, Thai word segmentation is domain-dependent. Researchers have been relying on transfer learning to adapt an existing model to a new domain. However, this approach is inapplicable to cases where we can interact with only input and output layers of the models, also known as {\textquotedblleft}black boxes{\textquotedblright}. We propose a filter-and-refine solution based on the stacked-ensemble learning paradigm to address this black-box limitation. We conducted extensive experimental studies comparing our method against state-of-the-art models and transfer learning. Experimental results show that our proposed solution is an effective domain adaptation method and has a similar performance as the transfer learning method."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="limkonchotiwat-etal-2020-domain">
<titleInfo>
<title>Domain Adaptation of Thai Word Segmentation Models using Stacked Ensemble</title>
</titleInfo>
<name type="personal">
<namePart type="given">Peerat</namePart>
<namePart type="family">Limkonchotiwat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wannaphong</namePart>
<namePart type="family">Phatthiyaphaibun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Raheem</namePart>
<namePart type="family">Sarwar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekapol</namePart>
<namePart type="family">Chuangsuwanich</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sarana</namePart>
<namePart type="family">Nutanong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Bonnie</namePart>
<namePart type="family">Webber</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Trevor</namePart>
<namePart type="family">Cohn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yulan</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Like many Natural Language Processing tasks, Thai word segmentation is domain-dependent. Researchers have been relying on transfer learning to adapt an existing model to a new domain. However, this approach is inapplicable to cases where we can interact with only input and output layers of the models, also known as “black boxes”. We propose a filter-and-refine solution based on the stacked-ensemble learning paradigm to address this black-box limitation. We conducted extensive experimental studies comparing our method against state-of-the-art models and transfer learning. Experimental results show that our proposed solution is an effective domain adaptation method and has a similar performance as the transfer learning method.</abstract>
<identifier type="citekey">limkonchotiwat-etal-2020-domain</identifier>
<identifier type="doi">10.18653/v1/2020.emnlp-main.315</identifier>
<location>
<url>https://aclanthology.org/2020.emnlp-main.315/</url>
</location>
<part>
<date>2020-11</date>
<extent unit="page">
<start>3841</start>
<end>3847</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Domain Adaptation of Thai Word Segmentation Models using Stacked Ensemble
%A Limkonchotiwat, Peerat
%A Phatthiyaphaibun, Wannaphong
%A Sarwar, Raheem
%A Chuangsuwanich, Ekapol
%A Nutanong, Sarana
%Y Webber, Bonnie
%Y Cohn, Trevor
%Y He, Yulan
%Y Liu, Yang
%S Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)
%D 2020
%8 November
%I Association for Computational Linguistics
%C Online
%F limkonchotiwat-etal-2020-domain
%X Like many Natural Language Processing tasks, Thai word segmentation is domain-dependent. Researchers have been relying on transfer learning to adapt an existing model to a new domain. However, this approach is inapplicable to cases where we can interact with only input and output layers of the models, also known as “black boxes”. We propose a filter-and-refine solution based on the stacked-ensemble learning paradigm to address this black-box limitation. We conducted extensive experimental studies comparing our method against state-of-the-art models and transfer learning. Experimental results show that our proposed solution is an effective domain adaptation method and has a similar performance as the transfer learning method.
%R 10.18653/v1/2020.emnlp-main.315
%U https://aclanthology.org/2020.emnlp-main.315/
%U https://doi.org/10.18653/v1/2020.emnlp-main.315
%P 3841-3847
Markdown (Informal)
[Domain Adaptation of Thai Word Segmentation Models using Stacked Ensemble](https://aclanthology.org/2020.emnlp-main.315/) (Limkonchotiwat et al., EMNLP 2020)
ACL