@inproceedings{van-noord-etal-2020-character,
title = "Character-level Representations Improve {DRS}-based Semantic Parsing Even in the Age of {BERT}",
author = "van Noord, Rik and
Toral, Antonio and
Bos, Johan",
editor = "Webber, Bonnie and
Cohn, Trevor and
He, Yulan and
Liu, Yang",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.emnlp-main.371",
doi = "10.18653/v1/2020.emnlp-main.371",
pages = "4587--4603",
abstract = "We combine character-level and contextual language model representations to improve performance on Discourse Representation Structure parsing. Character representations can easily be added in a sequence-to-sequence model in either one encoder or as a fully separate encoder, with improvements that are robust to different language models, languages and data sets. For English, these improvements are larger than adding individual sources of linguistic information or adding non-contextual embeddings. A new method of analysis based on semantic tags demonstrates that the character-level representations improve performance across a subset of selected semantic phenomena.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="van-noord-etal-2020-character">
<titleInfo>
<title>Character-level Representations Improve DRS-based Semantic Parsing Even in the Age of BERT</title>
</titleInfo>
<name type="personal">
<namePart type="given">Rik</namePart>
<namePart type="family">van Noord</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Antonio</namePart>
<namePart type="family">Toral</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Johan</namePart>
<namePart type="family">Bos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Bonnie</namePart>
<namePart type="family">Webber</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Trevor</namePart>
<namePart type="family">Cohn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yulan</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We combine character-level and contextual language model representations to improve performance on Discourse Representation Structure parsing. Character representations can easily be added in a sequence-to-sequence model in either one encoder or as a fully separate encoder, with improvements that are robust to different language models, languages and data sets. For English, these improvements are larger than adding individual sources of linguistic information or adding non-contextual embeddings. A new method of analysis based on semantic tags demonstrates that the character-level representations improve performance across a subset of selected semantic phenomena.</abstract>
<identifier type="citekey">van-noord-etal-2020-character</identifier>
<identifier type="doi">10.18653/v1/2020.emnlp-main.371</identifier>
<location>
<url>https://aclanthology.org/2020.emnlp-main.371</url>
</location>
<part>
<date>2020-11</date>
<extent unit="page">
<start>4587</start>
<end>4603</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Character-level Representations Improve DRS-based Semantic Parsing Even in the Age of BERT
%A van Noord, Rik
%A Toral, Antonio
%A Bos, Johan
%Y Webber, Bonnie
%Y Cohn, Trevor
%Y He, Yulan
%Y Liu, Yang
%S Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)
%D 2020
%8 November
%I Association for Computational Linguistics
%C Online
%F van-noord-etal-2020-character
%X We combine character-level and contextual language model representations to improve performance on Discourse Representation Structure parsing. Character representations can easily be added in a sequence-to-sequence model in either one encoder or as a fully separate encoder, with improvements that are robust to different language models, languages and data sets. For English, these improvements are larger than adding individual sources of linguistic information or adding non-contextual embeddings. A new method of analysis based on semantic tags demonstrates that the character-level representations improve performance across a subset of selected semantic phenomena.
%R 10.18653/v1/2020.emnlp-main.371
%U https://aclanthology.org/2020.emnlp-main.371
%U https://doi.org/10.18653/v1/2020.emnlp-main.371
%P 4587-4603
Markdown (Informal)
[Character-level Representations Improve DRS-based Semantic Parsing Even in the Age of BERT](https://aclanthology.org/2020.emnlp-main.371) (van Noord et al., EMNLP 2020)
ACL