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Abstract

We combine character-level and contextual
language model representations to improve
performance on Discourse Representation
Structure parsing. Character representations
can easily be added in a sequence-to-sequence
model in either one encoder or as a fully
separate encoder, with improvements that
are robust to different language models, lan-
guages and data sets. For English, these im-
provements are larger than adding individual
sources of linguistic information or adding
non-contextual embeddings. A new method
of analysis based on semantic tags demon-
strates that the character-level representations
improve performance across a subset of se-
lected semantic phenomena.

1 Introduction

Character-level models have obtained impressive
performance on a number of NLP tasks, rang-
ing from the classic POS-tagging (Santos and
Zadrozny, 2014) to complex tasks such as Dis-
course Representation Structure (DRS) parsing
(van Noord et al., 2018b). However, this was before
the large pretrained language models (Peters et al.,
2018; Devlin et al., 2019) took over the field, with
the consequence that for most NLP tasks, state-of-
the-art performance is now obtained by fine-tuning
on one of these models (e.g., Conneau et al., 2020).

Does this mean that, despite a long tradition
of being used in language-related tasks (see Sec-
tion 2.1), character-level representations are no
longer useful? We try to answer this question
by looking at semantic parsing, specifically DRS
parsing (Abzianidze et al., 2017; van Noord et al.,
2018a). We aim to answer the following research
questions:

1. Do pretrained language models (LMs) outper-
form character-level models for DRS parsing?

2. Can character and LM representations be com-
bined to improve performance, and if so, what
is the best method of combining them?

3. How do these improvements compare to
adding linguistic features?

4. Are the improvements robust across different
pretrained language models, languages, and
data sets?

5. On what type of sentences do character-level
representations specifically help?

Why semantic parsing? Semantic parsing is the
task of automatically mapping natural language ut-
terances to interpretable meaning representations.
The produced meaning representations can then
potentially be used to improve downstream NLP
applications (e.g., Issa et al., 2018; Song et al.,
2019; Mihaylov and Frank, 2019), though the in-
troduction of large pretrained language models has
shown that explicit formal meaning representations
might not be a necessary component to achieve
high accuracy. However, it is now known that these
models lack reasoning capabilities, often simply
exploiting statistical artifacts in the data sets, in-
stead of actually understanding language (Niven
and Kao, 2019; McCoy et al., 2019). Moreover,
Ettinger (2020) found that the popular BERT model
(Devlin et al., 2019) completely failed to acquire a
general understanding of negation. Related, Bender
and Koller (2020) contend that meaning cannot be
learned from form alone, and argue for approaches
that focus on grounding the language (communica-
tion) in the real world. We believe formal meaning
representations therefore have an important role to
play in future semantic applications, as semantic
parsers produce an explicit model of a real-world
interpretation.
Why Discourse Representation Structures?
DRS parsing is a task that combines logical, prag-
matic and lexical components of semantics in a
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Sent: I haven’t been to Boston since 2013.

b1 NEGATION b2 b3 REF x1
b1 REF t1 b3 Name x1 "boston"
b1 TPR t1 "now" b3 PRESUPPOSITION b2
b1 time "n.08" t1 b3 city "n.01" x1
b2 REF e1 b2 Start e1 t2
b2 Theme e1 "speaker" b2 REF t2
b2 Time e1 t1 b2 time "n.08" t2
b2 be "v.03" e1 b2 Location e1 x1
b2 YearOfCentury t2 "2013"

	city.n.01	(x1)
				Name	(x1,	"boston")
		

					x1																

	

		be.v.03	(e1)
						Theme	(e1,	"speaker")
						Time	(e1,	t1)
						Location	(e1,	x1)	
						Start	(e1,	t2)
		time.n.08	(t2)
						YearOfCentury	(t2,	"2013")
		

						t1																													

¬

		
time.n.08	(t1)
				t1	<	"now"

b3

b1

b2			e1			t2 b2

Figure 1: Example DRS in both clause (left) and box (right) representation.

single meaning representation. The task is com-
plex and comprises other NLP tasks, such as se-
mantic role labeling, word sense disambiguation,
co-reference resolution and named entity tagging.
Also, DRSs show explicit scope for certain oper-
ators, which allows for a more principled and lin-
guistically motivated treatment of negation, modals
and quantification, as has been advocated in formal
semantics. Moreover, DRSs can be translated to
formal logic, which allows for automatic forms of
inference by third parties. Lastly, annotated DRSs
are available in four languages (Abzianidze et al.,
2017, see Section 3.3), allowing us to evaluate our
models on multiple languages.

2 Background

2.1 Character-level models
The power of character-level representations has
long been known in the field. In earlier work,
they were successfully used in a range of tasks,
including text-to-speech (Sejnowski and Rosen-
berg, 1987), parallel text alignment (Church, 1993),
grapheme to phoneme conversion (Kaplan and Kay,
1994), language identification (Dunning, 1994),
topical similarity prediction (Cavnar, 1994), named
entity recognition (Klein et al., 2003), authorship
attribution (Peng et al., 2003) and statistical ma-
chine translation (Vilar et al., 2007).

More recently, they also proved useful as input
representations for neural networks, starting with
success in general language modelling (Sutskever
et al., 2011; Kim et al., 2016; Bojanowski et al.,
2017), but also for a range of other tasks, includ-
ing tokenization (Evang et al., 2013), POS-tagging
(Santos and Zadrozny, 2014; Plank et al., 2016),
dependency parsing (Ballesteros et al., 2015; Vania
et al., 2018) and neural machine translation (Chung
et al., 2016; Costa-jussà and Fonollosa, 2016; Lu-
ong and Manning, 2016; Cherry et al., 2018).

In semantic parsing, if character-level represen-

tations are employed, they are commonly used in
combination with non-contextual word-level rep-
resentations (Lewis et al., 2016; Ballesteros and
Al-Onaizan, 2017; Groschwitz et al., 2018; Cai and
Lam, 2019). There are a few recent studies that did
use character-level representations in combination
with BERT (Zhang et al., 2019a,b; Cai and Lam,
2020), though only Zhang et al. (2019a) provided
an ablation score without the characters. More-
over, it is not clear if this small improvement was
significant. van Noord and Bos (2017) and van
Noord et al. (2018b), on the other hand, used solely
character-level representations in an end-to-end
fashion, using a bi-LSTM sequence-to-sequence
model, which outperformed word-based models
that employed non-contextual embeddings.

2.2 Discourse Representation Structures

DRSs are formal meaning representations intro-
duced by Discourse Representation Theory (Kamp
and Reyle, 1993) with the aim to capture the mean-
ing of texts (Figure 1). Many variants of DRS have
been proposed throughout the years. We adopt
Venhuizen et al. (2018)’s version of DRT, which
is close to Kamp’s original ideas, but has a neo-
Davidsonian view of event semantics and explicitly
represents presuppositions.
Corpora The Groningen Meaning Bank (GMB,
Basile et al., 2012; Bos et al., 2017) was the first
attempt of annotating open domain English texts
with DRSs. The released documents are partially
corrected, but there are no gold standard sets avail-
able for evaluation. A similar corpus is the Paral-
lel Meaning Bank (PMB, Abzianidze et al., 2017),
which builds upon the GMB in a number of ways. It
contains (parallel) texts in four languages: English,
German, Italian and Dutch, with more fine-grained
and language-neutral DRSs. Semantic tags are used
during annotation (Bjerva et al., 2016; Abzianidze
and Bos, 2017), and all non-logical DRS symbols
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are grounded in either WordNet (Fellbaum, 1998)
or VerbNet (Bonial et al., 2011). Moreover, its
releases contain gold standard DRSs. For these
reasons, we take the PMB as our corpus of choice
to evaluate our DRS parsers.
DRS parsing Early approaches to DRS pars-
ing employed rule-based systems for small English
texts (Johnson and Klein, 1986; Wada and Asher,
1986; Bos, 2001). The first open domain DRS
parser is Boxer (Bos, 2008, 2015), which is a com-
bination of rule-based and statistical models. Le
and Zuidema (2012) used a probabilistic parsing
model that used dependency structures to parse
GMB data as graphs. More recently, Liu et al.
(2018) proposed a neural model that produces (tree-
structured) DRSs in three steps by first learning the
general (box) structure of a DRS, after which spe-
cific conditions and referents are filled in. In follow-
up work (Liu et al., 2019a) they extend this work
by adding an improved attention mechanism and
constraining the decoder to ensure well-formed out-
put. This model achieved impressive performance
on both sentence-level and document-level DRS
parsing on GMB data. Fu et al. (2020) in turn im-
prove on this work by employing a Graph Attention
Network during both encoding and decoding.

The introduction of gold standard DRSs in
the PMB enabled a principled comparison of ap-
proaches. In our previous work (van Noord et al.,
2018b), we showed that sequence-to-sequence
models can successfully learn to produce DRSs,
with characters as the preferred representation. In
follow-up work, we improved on these scores by
adding linguistic features (van Noord et al., 2019).
The first shared task on DRS parsing (Abzian-
idze et al., 2019) sparked more interested in the
topic, with a system based on stack-LSTMs (Evang,
2019) and a neural graph-based system (Fancellu
et al., 2019). The best system (Liu et al., 2019b)
used a similar approach as van Noord et al. (2018b),
but swapped the bi-LSTM encoder for a Trans-
former. We will compare our approach to these
models in Section 4.

3 Method
3.1 Neural Architecture

As our baseline system, we start from a fairly stan-
dard sequence-to-sequence model with attention
(Bahdanau et al., 2015), implemented in AllenNLP
(Gardner et al., 2017).1 We improve on this model

1https://github.com/RikVN/allennlp

in a number of ways, mainly based on Nematus
(Sennrich et al., 2017): (i) we initialize the decoder
hidden state with the mean of all encoder states, (ii)
we add an extra linear layer between this mean en-
coder state and the initial decoder state and (iii) we
add an extra linear layer after each decoder state.

Specifically, given a source sequence
(s1, . . . , sl) of length l, and a target sequence
(t1, . . . , tk) of length k, let ei be the embedding of
source symbol i, let hi be the encoder hidden state
at source position i and let dj be the decoder state
at target position j. A single forward encoder state
is obtained as follows:

−→
h i = LSTM(

−→
h i−1, ei).

The final state is obtained by concatenating the for-
ward and backward hidden states, hi = [

−→
h i;
←−
h i].

The decoder is initialized with the average over
all encoder states: ctok =

(∑l
i=1 hi

)
/ l and

d0 = tanh (Winit ctok).
Characters in one encoder We will experiment
with adding character-level information in either
one or two encoders. For one encoder, we use
char-CNN (Kim et al., 2016), which runs a Con-
volutional Neural Network (LeCun et al., 1990)
over the characters for each token. It applies
convolution layers for certain widths, which in
essence select n-grams of characters. For each
width, it does this a predefined number of times,
referred to as the number of filters. The filter
vectors form a matrix, which is then pooled to
a vector by taking the max value of each initial
filter vector. A detailed schematic overview of
this procedure is shown in Appendix A. However,
we usually do not look at only a single width,
but at a range of widths, e.g., [1, 2, 3, 4, 5]. In
that case, we simply concatenate the resulting
vectors to obtain our final char-CNN embedding:
echari = [ew1; ew2; ew3; ew4; ew5]. Each width-
filter combination has independent learnable pa-
rameters. Finally, the char-CNN embedding is con-
catenated to the token-level representation, which
is fed to the encoder: ei = [etoki ; echari ].
Characters in two encoders In the two-encoder
setup, we run separate (but structurally identical)
bi-LSTM encoders over the tokens and characters,
and concatenate the resulting context vector before
we feed it to the decoder:

d0 = tanh (Winit [ctok; cchar])

In the decoder, we replace the LSTM with
a doubly-attentive LSTM, based on the doubly-

https://github.com/RikVN/allennlp
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Linear (d0)
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BERT embedding (etok)
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Learned embedding (echar)

2013 I + h a ... 3v e
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Enc 1

...

...
@0

Figure 2: Schematic overview of our neural architec-
ture when using two encoders (BERT and characters).

attentive GRU (Calixto et al., 2017). We apply
soft-dual attention (Junczys-Dowmunt and Grund-
kiewicz, 2017) to be able to attend over both en-
coders in the decoder (also see Figure 2):

d′j = LSTM1

(
dj−1, etj−1

)
aj =

[
ATT

(
Ctok,d

′
j

)
;ATT

(
Cchar,d

′
j

)]
dj = LSTM2

(
d′j ,aj

)
Here, etj−1 is the embedding of the previously

decoded symbol t, C the set of encoder hidden
states for either the tokens or characters, ATT the
attention function (dot-product) and dj the final de-
coder hidden state at step j. This model can easily
be extended to more than two encoders, which we
will experiment with in Section 4.

This type of multi-source model is commonly
used to represent different languages, e.g., in ma-
chine translation (Zoph and Knight, 2016; Firat
et al., 2016) and semantic parsing (Susanto and
Lu, 2017; Duong et al., 2017), though it has also
been successfully applied in multi-modal transla-
tion (Libovický and Helcl, 2017), multi-framework
semantic parsing (Stanovsky and Dagan, 2018) and
adding linguistic information (Currey and Heafield,
2018; van Noord et al., 2019). To the best of our
knowledge, we are the first to represent the char-
acters as a source of extra information in a multi-
source sequence-to-sequence model.
Transformer We also experiment with the
Transformer model (Vaswani et al., 2017), using
the stacked self attention model as implemented
in AllenNLP. A possible advantage of this model
is that it might handle longer sentences and docu-
ments better. However, it might be harder to tune
(Popel and Bojar, 2018)2 and its improved perfor-
mance has mainly been shown for large data sets, as

2Also see: https://twitter.com/srush_nlp/
status/1245825437240102913

opposed to the generally smaller semantic parsing
data sets (Section 3.3). Indeed, we cannot outper-
form the LSTM architecture (see Section 4), even
when tuning more extensively. We therefore do not
experiment with adding character-level representa-
tions to this architecture, though the char-CNN can
be added similarly as for the LSTM model.
Hyper-parameters To make a fair comparison,
we conduct an independent hyper-parameter search
on the development set for all nine input text repre-
sentations (see Section 3.2) across the two neural
architectures, starting from the settings of van No-
ord et al. (2019). We found that the best settings
were very close for all systems, with the only no-
table difference that the learning rate of the Trans-
former models is considerably smaller than for the
bi-LSTM models (0.0002 vs 0.001).3

For the char-CNN model, we use 100 filters,
an embedding size of 75 and n-gram filter sizes
of [1, 2, 3] for English and [1, 2, 3, 4, 5] for Ger-
man, Italian and Dutch. For experiments where
we add characters or linguistic features, the only
extra search we do is the size of the hidden vector
of the RNN encoder (300− 600), since this vector
now has to contain more information, and could
potentially benefit from a larger size. Note that
(possible) improved performance is not simply due
to larger model capacity, since during tuning of the
baseline models a larger RNN hidden size did not
result in better performance.

3.2 Representations

We will experiment with five well-known pre-
trained language models: ELMO (Peters et al.,
2018), BERT base/large (Devlin et al., 2019) and
ROBERTA base/large (Liu et al., 2019c).4 The per-
formance of these five large LMs is contrasted with
results of a character-level model and three word-
based models. The word-based models either learn
the embeddings from scratch or use non-contextual
GLOVE (Pennington et al., 2014) or FASTTEXT

(Grave et al., 2018) embeddings. Pre- and postpro-
cessing of the DRSs is done using the method de-
scribed in van Noord et al. (2018b).5 The DRSs are
linearized, after which the variables are rewritten to
a relative representation. The character-level model

3See Appendix B for specific hyperparameter settings.
4We are aware that there exist several other large pre-

trained language models (e.g., Yang et al., 2019; Raffel et al.,
2020; Clark et al., 2020), but we believe that the models we
used have had the largest impact on the field.

5https://github.com/RikVN/Neural_DRS/

https://twitter.com/srush_nlp/status/1245825437240102913
https://twitter.com/srush_nlp/status/1245825437240102913
https://github.com/RikVN/Neural_DRS/
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Gold Silver Bronze
Train Dev Test Train Train

2.2.0 English 4,597 682 650 67,965 120,662
German 0 727 747 4,235 102,998
Italian 0 374 400 2,515 61,504
Dutch 0 370 341 1,051 20,554

3.0.0 English 6,620 885 898 97,598 146,371
German 1,159 417 403 5,250 121,111
Italian 0 515 547 2,772 64,305
Dutch 0 529 483 1,301 21,550

Table 1: Number of documents for the four languages,
for the two PMB releases considered.

has character representations for the DRS concepts
and constants, but not for variables, roles and oper-
ators. For all word-level models, the DRS concepts
are initialized with GLOVE embeddings, while the
other target tokens are learned from scratch.
BERT specifics For the BERT models, we ob-
tained the best performance by only keeping the
vector of the first WordPiece per original token
(e.g., only keep play out of play ##ing). For
ROBERTA, it was best to use the WordPiece tok-
enization as is. Since linguistic features are added
on token level, we duplicate the semantic tags for
multi-piece tokens of ROBERTA in Table 5. Interest-
ingly, we found that for both BERT and ROBERTA,
it was best to keep the pretrained weights frozen.
This was not a small difference: models using fine-
tuning always obtained low scores (45 to 60).

3.3 Data and Evaluation

We use PMB releases 2.2.0 and 3.0.06 in our exper-
iments (Table 1). The latter is a larger and more
diverse extension of 2.2.0, which will be used for
most of our experiments. We use 2.2.0 to compare
to previous work and to verify that our results are
robust across datasets. The PMB releases contain
DRSs for four languages (English, German, Ital-
ian and Dutch) for three levels of annotation: gold
(fully manually checked), silver (partially manually
corrected) and bronze (no manual corrections). To
make a fair comparison to previous work, we only
employ the gold and silver data, by pretraining on
gold + silver data and subsequently fine-tuning on
only the gold data. If there is no gold train data
available, we train on silver + bronze and fine-tune
on silver. Unless otherwise indicated, our results
are on the English development set of release 3.0.0.

6https://pmb.let.rug.nl/data.php

Sent I have n’t been to Boston since 2013

POS PRP VBP RB VBN TO NNP IN CD

SEM PRO NOW NOT EXT REL GPE REL YOC

LEM I have not be to Boston since 2013

DEP nsubj aux neg cop case ROOT case nmod

CCG NP VP\VP VPVP VP/PP PP/NP N (VP\VP)/NP N

Table 2: Example representation for each source of lin-
guistic information (PMB document p00/d1489).

Linguistic features We want to contrast our
method of character-level information to adding
sources of linguistic information. Based on van
Noord et al. (2019), we employ these five sources:
part-of-speech tags (POS), dependency parses
(DEP), lemmas (LEM), CCG supertags (CCG) and
semantic tags (SEM). For the first three sources,
we use Stanford CoreNLP (Manning et al., 2014)
to parse the documents in our dataset. The CCG su-
pertags are obtained by using easyCCG (Lewis and
Steedman, 2014). For semantic tagging, we train
our own trigram-based tagger using TnT (Brants,
2000).7 Table 2 shows a tagged example sentence
for all five sources of information. Moreover, we
also include non-contextual GLOVE and FASTTEXT

embeddings as an extra source of information.
We add these sources of linguistic information

in the same way as we add the character-level infor-
mation, in either one or two encoders (see Section
3.1). In two encoders, we can use the exact same
architecture. For one encoder, we (obviously) do
not use the char-CNN, but learn a separate em-
bedding for the tags (of size 200), that is then
concatenated to the token-level representation, i.e.,
ei = [etoki ; elingi ]. If we use two encoders with
a LM, characters and linguistic information (e.g.,
Table 4), the characters are added separately in
the second encoder, while the LM and linguistic
information representations are added in the first
encoder.
Evaluation We compare the produced DRSs to
the gold standard using Counter (van Noord et al.,
2018a), which calculates micro precision, recall
and F1-score based on the number of matching
clauses.8 We use Referee (van Noord et al., 2018b)
to ensure that the produced DRSs are syntactically
and semantically well-formed (i.e., no free vari-
ables, no loops in subordinate relations) and form
a connected graph. DRSs that are ill-formed get

7This tagger is also used in the PMB pipeline, see Abzian-
idze and Bos (2017). It outperformed an ngram-based CRF-
tagger (Lafferty et al., 2001) we also tried, obtaining an accu-
racy of 94.4% on the dev set.

8https://github.com/RikVN/DRS_parsing/

https://pmb.let.rug.nl/data.php
https://github.com/RikVN/DRS_parsing/
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an F1-score of 0.0. All shown scores are averaged
F1-scores over five training runs of the system, in
which the same five random seeds are used.9 For
significance testing we use approximate randomiza-
tion (Noreen, 1989), with α = 0.05 and R = 1000.

We also introduce and release DRS-JURY. This
program provides a detailed overview of the per-
formance of a DRS parser, but can also compare
experiments, possibly over multiple runs. Features
include significance testing, semantic tag analysis
(Section 5.1), sentence length plotting (Section 5.2),
new detailed Counter scores (Appendix D), and
analysing (relative) best/worst produced DRSs (Ap-
pendix E). We hope this is a step in the direction of
a more principled way of evaluating DRS parsers.

4 Results

LMs vs char-level models DRS parsing is no
exception to the general trend in NLP: it is indeed
the case that the pretrained language models outper-
form the char-only model (Table 3). Interestingly,
the Transformer model has worse performance for
all representations.10 Surprisingly, we find that
BERT-BASE is the best model, though the differ-
ences are small.11 We use this model in further
experiments (referred to as BERT).
Adding characters to BERT We can see the
impact of adding characters to BERT (first row of
results in Table 4). For both methods, it results
in a clear and significant improvement over the
BERT-only baseline, 87.6 versus 88.1.
Adding linguistic features to BERT However,
another common method of improving perfor-
mance is adding linguistic features to the token-
level representations. We try a range of linguistic
features (described in Section 3.3), that are added
in either one or two encoders. We see in the first
two columns of results of Table 4 that even though
linguistic information sources indeed do improve
performance (up to 0.4 absolute), there is no single
source that can beat adding just the character-level
representations (88.1).
Combining characters and linguistic features
An obvious follow-up question is whether we still
see improvements for character-level models when

9Standard deviations are omitted for brevity, though avail-
able for all experiments here: https://github.com/
RikVN/Neural_DRS/

10The Transformer models were even tuned longer, since
they were more sensitive to small hyperparameter changes.

11BERT-BASE significantly outperformed all the other mod-
els, except for BERT-LARGE.

bi-LSTM Transformer

Char 86.1 79.7
Word 85.3 83.6
GLOVE 85.4 84.6
FASTTEXT 85.5 84.0
ELMO 87.3 84.3
BERT-BASE 87.6 85.4
BERT-LARGE 87.5 84.7
ROBERTA-BASE 87.0 82.7
ROBERTA-LARGE 86.8 81.9

Table 3: Baseline model for the nine input representa-
tions considered, for the bi-LSTM and Transformer ar-
chitectures. Best score in each column shown in bold.

No chars + characters
1-enc 2-enc 1-enc 2-enc 3-enc

BERT 87.6 NA 88.1 88.1 NA

BERT + word 87.7 87.4 87.8 87.6 86.9
BERT + GLOVE 87.9 87.2 88.1 88.0 86.9
BERT + FASTTEXT 87.8 87.7 87.9 87.9 87.0
BERT + pos 87.6 87.6 87.4 87.6 87.8
BERT + sem 87.9 88.0 88.0 88.4 88.1
BERT + lem 87.8 88.0 88.1 88.0 87.4
BERT + dep 87.9 87.5 88.0 87.8 87.8
BERT + ccg 87.8 87.3 87.9 87.8 87.6

Table 4: Results for adding characters, linguistic infor-
mation and a combination of the two to the bi-LSTM
BERT-BASE model on 3.0.0 English dev.

also adding linguistic information. In a single en-
coder, adding characters (third column of results
in Table 4) is beneficial for 6 out of 7 linguistic
sources (i.e., compared to the first column of re-
sults). The scores are, however, not higher than
simply adding characters on their own, suggesting
that linguistic features are not always beneficial
if character-level features are also included. For
two encoders, the pattern is less clear, but we do
find our highest score thus far when we combine
characters and semantic tags (88.4).12 Using three
encoders did not yield clear improvements over
two encoders. Therefore, we do not experiment
with using more than three encoders.
Robustness to different LMs We want to verify
that the character improvements are robust to using
different language models (Table 5). We see that
adding characters results in improvement for all the
LMs under consideration, even for ELMO, which al-
ready incorporates characters in creating the initial
embeddings. Moreover, combining characters and

12This improvement is significant. With gold semantic tags
(ceiling performance) we score 88.6.

https://github.com/RikVN/Neural_DRS/
https://github.com/RikVN/Neural_DRS/
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Figure 3: Dev and test scores (F1) for the four models we trained for three languages (German, Italian and Dutch).
For 2.2.0, we compare our results to Fancellu et al. (2019).

No char +char
(1 enc)

+char
(2 enc)

+char +sem
(2 enc)

ELMO 87.3 87.6 87.8 88.0
BERT-BASE 87.6 88.1 88.1 88.4
BERT-LARGE 87.5 88.2 87.8 88.3
ROBERTA-BASE 87.0 87.3 87.8 88.0
ROBERTA-LARGE 86.8 86.8 87.0 87.3

Table 5: Results on 3.0.0 English dev of four LMs for
adding characters and both characters and semtags.

semantic tags also results in an improvement over
just using characters for all the LMs considered.
Robustness across languages We train sys-
tems for German, Italian and Dutch for four
models: char-only, BERT-ONLY, BERT + char
in 1 encoder, and BERT + char in two
encoders.13 The BERT model we use is
bert-multilingual-uncased. The results
for both PMB releases are shown in Figure 3. For
all languages, adding characters leads to a clear im-
provement for both one and two encoders, though
for Dutch the improvement is smaller than for Ger-
man and Italian. Interestingly, the two-encoder
setup seems to be preferable for these smaller, non-
English data sets. For 2.2.0, we outperform the
system of Fancellu et al. (2019) for German and
Italian and obtain competitive scores for Dutch.
Comparison to previous work To check
whether the improvements hold on unseen data,
we run our best models on the test set and compare
the scores to previous work (Table 6).14 We see

13We do not train a model that uses semantic tags as fea-
tures, since there is not enough gold semantic tag data avail-
able to train a good tagger for any of these languages.

14For the detailed Counter scores see Appendix D.

2.2.0 3.0.0
Dev Test Dev Test

Amateur Boxer 72.2 72.2 78.2 78.8
Pro Boxer NA NA 88.2 88.9
Fancellu et al. (2019) NA 76.4 NA NA
Evang (2019) 74.4 74.4 NA NA
van Noord et al. (2018b) 81.2 83.3 84.3 84.9
van Noord et al. (2019) 86.5 86.8 86.8 87.7
Liu et al. (2019b) 85.5 87.1 NA NA

This work - BERT 85.4 87.9 87.6 88.5
This work - BERT + char (1 enc) 86.1 88.3 88.1 89.2
This work - BERT + char (2 enc) 85.6 88.1 88.1 89.0
This work - Best model 85.5 87.7 88.4 89.3

Table 6: Comparison of our four main models to previ-
ous work for PMB 2.2.0 and 3.0.0 (English only).

that adding the character-level information has sim-
ilar (significant) improvements for dev and test on
both data sets. The addition of semantic tags might
be questionable: for 2.2.0, both the BERT + char
models outperform this model, while for 3.0.0 the
0.1 improvement over BERT + char in one encoder
is not significant. Despite this, we reach state-of-
the-art performance on both data sets, significantly
outperforming the previous best scores by van No-
ord et al. (2019) and Liu et al. (2019b). We also
compare to the semantic parser Boxer, which needs
input for 6 different PMB layers (Abzianidze et al.,
2017). Amateur Boxer is trained with internal PMB
taggers, while Pro Boxer uses the output of a neural
multi-task learning system based on BERT (van der
Goot et al., 2020). Even though this is an unfair
comparison to our system, since the rule-based
components of Boxer are (partly) optimized on the
dev and test sets, our best model still improves
slightly over Pro Boxer (significantly on test).
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# Docs BERT +char +char +ch+sem
(1 enc) (2 enc) (2 enc)

All sentences 1,783 88.1 88.7 88.5 88.8

Modality 188 86.8 +0.1 +0.1 +0.4
Negation 156 88.8 +0.2 -0.1 +0.4
Possibility 38 81.3 0.0 +1.0 +1.5
Necessity 13 74.5 -1.6 +1.4 -0.2

Logical 449 86.3 +0.7 +0.2 +0.5
Pronouns 996 88.9 +0.4 +0.4 +0.6
Attributes 1,063 87.6 +0.7 +0.4 +0.8
Comparatives 45 84.5 +1.6 +0.2 -0.2
Named entities 673 88.1 +0.5 +0.3 +0.6
Numerals 186 85.8 +1.1 +1.2 +1.5

Table 7: F-scores on subsets of sentences that contain
a certain phenomenon, based on semantic tags, for the
combined dev and test set of PMB release 3.0.0. Full
scores shown for BERT and absolute differences for the
remaining systems.

5 Analysis

5.1 Semantic tag analysis

We are also interested in finding out why the
character-level representations help improve perfor-
mance. As a start, we investigate on what type of
sentences and semantic phenomena the character
representations are the most beneficial. We intro-
duce a novel method of analysis: selecting subsets
of sentences based on the occurrence of certain se-
mantic tags. In the PMB release, each token is also
annotated with a semantic tag, which indicates the
semantic properties of the token in the given con-
text (Abzianidze and Bos, 2017). This allows us to
easily select all sentences that contain certain (se-
mantic) phenomena and evaluate the performance
of the different models on those sentences.15

The selected phenomena and corresponding F-
scores for our four best models (see Table 6) are
shown in Table 7.16 Our best model (+ch+sem) has
the best performance on six of the seven phenom-
ena selected, even though the differences are small.
The character-level representations seem to help
across the board; the +char models improve on the
baseline (BERT) in almost all instances.

For Numerals and Named Entities we expected
the characters to help specifically, since (i) BERT

representations might not be as optimal for all indi-
vidual numerals (Wallace et al., 2019), and (ii) the

15Note that this method of analysis can easily be used for
other NLP tasks as well, the only requirement being that a
semantic tagger has to be used to get the semantic tags.

16See Appendix C for the list of semtags per category.
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Figure 4: F-scores over document length (tokens) on
the combined English dev and test set of 3.0.0. X-axis
shows document length (top) and the number of docu-
ments for that length (bottom).

character representations might attend more to cap-
ital letters, which often indicate the presence of a
named entity. Indeed, the character representations
clearly help for Numerals, but less so for Named
Entities. Of course, this analysis only scratched
the surface as to why the character-level represen-
tations improve performance. We leave a more
detailed investigation to future work.

5.2 Sentence length analysis

We are also interested in finding out which model
performs well on longer documents. When the
Transformer model was introduced, one of the
advantages was less decrease in performance for
longer sentences (Vaswani et al., 2017). Also, since
Boxer is partly rule-based and not trained in an end-
to-end fashion, it might be able to handle longer
sentences better. Figure 4 shows the performance
over sentence length for seven of our trained sys-
tems. We see a similar trend for all models: a
decrease in performance for longer sentences. We
also create a regression model that predicts F-score,
with as predictors parser and document length in
tokens, similar to van Noord et al. (2018b). We do
not find a significant interaction of any model with
sentence length, i.e., none of the models decreases
significantly less or more than any other model.

To get some idea how well our models would
do on longer (possibly multi-sentence) documents,
we create a new evaluation set. We select all sil-
ver documents with 15 or more and less than 51
tokens that have at least the semtagging or CCG
layer marked as gold standard. This resulted in a
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Figure 5: F-scores over document length (tokens) on
the silver standard evaluation set of longer documents.
X-axis shows the sentence length bins (top) and the
number of documents for that length (bottom).

set of 128 DRSs, which should contain the higher
quality silver documents. We retrain our models
with those sentences removed and plot the perfor-
mance over sentence length in Figure 5. We see that
performance still decreases for longer sentences,
though not as much after 30 tokens per document.
The Transformer model does not seem to catch up
with the bi-LSTM models, even for longer docu-
ments. The addition of characters is still beneficial
for longer documents, though only in one encoder.

5.3 Discussion

We found that adding character-level representa-
tions generally improved performance, though we
did not find a clear preference for either the one-
encoder or two-encoder model. We believe that,
given the better performance of the two-encoder
model on the fairly short documents of the non-
English languages (see Figure 3), this model is
likely the most useful in semantic parsing tasks
with single sentences, such as SQL parsing (Zelle
and Mooney, 1996; Iyer et al., 2017; Finegan-
Dollak et al., 2018), while the one encoder char-
CNN model has more potential for tasks with
longer sentences/documents, such as AMR (Ba-
narescu et al., 2013), UCCA (Abend and Rap-
poport, 2013) and GMB-based DRS parsing (Bos
et al., 2017; Liu et al., 2018, 2019a). The latter
model also has more potential to be applicable for
other (semantic parsing) systems as it can be ap-
plied to all systems that form token-level represen-
tations from a document. In this sense, we hope
that our findings here are also applicable for other,
more structured, encoder-decoder models devel-

oped for semantic parsing (e.g., Yin and Neubig,
2017; Krishnamurthy et al., 2017; Dong and Lap-
ata, 2018; Liu et al., 2019a).

An unexpected finding is that the BERT models
outperformed the larger ROBERTA models. In ad-
dition, it was even preferable to use BERT only as
initial token embedder, instead of fine-tuning using
the full model. Perhaps this is an indication that
certain NLP tasks cannot be solved by simply train-
ing ever larger language models. Moreover, the
Transformer model did not improve performance
for any of the input representations, while being
harder to tune as well. We are a bit hesitant with
drawing strong conclusions here, though, since
we only experimented with a vanilla Transformer,
while recent extensions (e.g., Dehghani et al., 2019;
Guo et al., 2019; Press et al., 2020) might be more
promising for smaller data sets.

6 Conclusion

We performed a range of experiments on Dis-
course Representation Structure Parsing using neu-
ral sequence-to-sequence models, in which we vary
the neural representation of the input documents.
We show that, not surprisingly, using pretrained
contextual language models is better than simply
using characters as input (RQ1). However, char-
acters can still be used to improve performance,
in both a single encoder and two encoders (RQ2).
The improvements are larger than using individual
sources of linguistic information, and performance
still improves in combination with these sources
(RQ3). The improvements are also robust across
different languages models, languages and data sets
(RQ4) and improve performance across a range
of semantic phenomena (RQ5). These methods
should be applicable to other semantic parsing and
perhaps other natural language analysis tasks.
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A Char-CNN

Figure 6 shows a schematic overview of using the
char-CNN (Kim et al., 2016) to encode the word
have with a width of 2. A width of 2 selects the
bigrams ha, av and ve, returning a scalar for each
bigram operation, which in turn form a vector f1
for filter 1. We then take the max value of this
vector to obtain the first value of our width 2 (w2)
char-CNN embedding ew21 . The final vector ew2

is thus of length n.
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Figure 6: Overview of the char-CNN encoder, encod-
ing the word have with bigrams (width = 2) for n filters.

B Experimental settings

Tuning Table 8 gives an overview of the hyper-
parameters we used and/or experimented with in
the tuning stage. This table only gives an overview
of the settings for the BERT-BASE model, though
the settings for the other representations (described
in 3.2) are usually very similar. We performed
manual tuning, selecting the settings with the high-
est F1-score. The number of tuning runs was be-
tween 10 and 40 for each representation type and
model combination (see Table 3). Output, evalua-
tion (containing F1-scores, standard deviation and
confidence interval) and configuration files for our
four best models (see Table 6) are available here:
https://github.com/RikVN/Neural_DRS/.

Data filtering We filtered ill-formed DRSs from
the PMB data sets, which only occurs for silver and
bronze data (< 0.1% of DRSs). For the bi-LSTM
models, the filtering of source and target tokens
(see Table 8) only filters out three very large docu-
ments from training. This was done for efficiency
and memory purposes, it did not make a difference
in terms of F1-score. However, for the Transformer
model this improved F1-score by around 0.5.

Training time and model size A single run of
the baseline BERT model takes about 5 hours to
train on a single NVIDIA V100 GPU, with around
17 million trainable parameters. Adding character-
level representations in one encoder (using the char-
CNN) uses around 55 million trainable parameters,
with a runtime of around 6 hours. Using a two
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encoder setup increases this to around 8 hours, but
with only 34 million trainable parameters.
New evaluation set When training models that
are evaluated on the silver-standard evaluation set
of longer documents, we do not perform fine-tuning
on the gold standard data. Also, we run Counter
with the --default-sense setting (not punish-
ing models that get the word sense wrong), since
the word senses of the evaluation set are not gold
standard. This has a similar increase of around 1.0
for all models.

Parameter LSTM Transf. Range

Hidden RNN size 300 NA 200 - 600
Decoder RNN size 300 NA 300

Num heads NA 6 2, 4, 6, 10
hidden dim NA 300 300 - 600
ff hidden dim NA 900 300 - 1200
dropout: layer NA 0.1 0.1, 0.2

residual NA 0.2 0.1, 0.2
attention NA 0.1 0.1, 0.2

target emb dim 300 300 300 (GLOVE)
max src tokens 125 50 30 - no max
max tgt tokens 1160 560 300 - no max
layers 1 6 1-3 LSTM, 1-10 Trans
max norm 3 3 3, 4, 5
scale grad by freq False False True/False
label smoothing 0.0 0.1 0.0, 0.05, 0.1, 0.2
beam size 10 10 10
max decoding steps 1000 500 500, 1000
scheduled sampling 0.2 0.0 0.0, 0,1, 0.2, 0.3, 0.4
batch size 48 32 12, 24, 32, 48, 64, 128
optimizer adam adam adam, sgd, BertAdam
learining rate 0.001 0.0002 0.0001 - 0.01
grad norm 0.9 0.9 0.7 - 0.95
min target occ 3 3 1, 3, 5, 10, 20

Table 8: An overview of the hyperparameters used for
the LSTM and Transformer architecture, that use the
BERT-BASE representations. Parameters not specified
are left at their default value.

C Semantic tag selection

Modality NOT NEC POS

Logical ALT XCL DIS AND IMP BUT

Pronouns PRO HAS REF EMP

Attributes QUC QUV COL IST SST

PRI DEG INT REL SCO

Comparatives EQU APX MOR LES

TOP BOT ORD

Named entities PER GPE GPO GEO ORG ART

HAP UOM CTC LIT NTH

Numerals QUC MOY SCO ORD DAT

DOM YOC DEC CLO

Table 9: Semantic tags that were used to select sen-
tences that contain a certain phenomenon. The example
sentence in Table 2 is included in the categories Modal-
ity, Pronouns, Named Entities and Numerals .

D Detailed scores

Table 10 shows the detailed F-scores for the En-
glish dev and test sets of release 2.2.0 and 3.0.0.
Infreq. sense is the F-score on all concept clauses
that were not the most frequent sense for that word
in the training set (e.g., be.v.01, like.v.03).
Perfect sense is the F-score when we ignore word
senses during matching, i.e., be.v.01 can match
with be.v.02. The last 9 rows are not in the orig-
inal detailed Counter scores, but are produced by
DRS-JURY. Character-level representations help to
produce fewer ill-formed and more perfect DRSs,
especially on 3.0.0.

E Sentence analysis

Table 11 shows the sentences for which our best
model (on 3.0.0 English dev) produced the lowest
quality DRSs, with a possible explanation. In Ta-
ble 12, we show the sentences for which our best
model has the best performance (relative to the
BERT-ONLY baseline model). It is harder to give an
explanation in this case, though we indicate which
clauses were (in)correctly predicted by the models.
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PMB release 2.2.0 PMB release 3.0.0

Development set Test set Development set Test set

bert +ch +ch +ch bert +ch +ch +ch bert +ch +ch +ch bert +ch +ch +ch
(1e) (2e) +sem (1e) (2e) +sem (1e) (2e) +sem (1e) (2e) +sem

Prec 87.3 87.8 87.4 87.6 89.8 89.9 89.9 89.5 88.8 88.9 89.3 89.5 90.0 90.6 90.3 90.5
Rec 83.6 84.4 83.6 83.5 86.2 86.7 86.4 86.0 86.4 87.3 86.9 87.2 87.1 87.9 87.6 88.0
F1 85.4 86.1 85.5 85.5 87.9 88.3 88.1 87.7 87.6 88.1 88.1 88.4 88.5 89.2 88.9 89.3
Operators 94.7 95.2 94.7 94.4 94.8 94.7 94.4 94.7 95.0 95.4 95.4 95.7 95.7 95.7 95.7 96.1
Roles 88.0 88.4 88.2 88.0 90.3 90.3 90.5 89.8 89.0 89.0 89.2 89.9 89.4 90.1 89.9 90.0
Concepts 83.9 84.5 84.0 84.8 87.4 87.9 87.6 87.4 84.7 84.9 85.6 85.4 87.3 87.9 87.4 87.7

Nouns 90.8 91.5 91.1 91.4 92.4 92.8 92.4 92.5 90.6 91.0 91.4 91.5 92.0 92.5 91.8 92.5
Verbs 65.6 65.4 64.8 67.6 75.7 76.4 76.3 75.5 69.1 68.9 70.4 69.2 75.3 76.0 76.4 75.3
Adjectives 70.4 74.0 72.7 71.5 70.9 72.3 70.8 71.5 76.1 75.3 76.6 75.5 75.8 77.5 76.2 76.0
Adverbs 90.0 67.7 83.3 63.3 70.0 71.7 73.3 61.0 78.1 77.7 78.7 80.1 88.0 88.2 87.7 88.9
Events 66.7 67.3 66.5 68.4 74.8 75.7 75.4 74.7 70.8 70.5 71.9 70.7 75.4 76.3 76.4 75.4

Perfect sense 87.3 88.1 87.6 87.4 89.3 89.7 89.5 89.1 89.6 90.3 90.2 90.4 91.6 92.2 92.0 92.1
Infreq. sense 50.5 50.5 46.7 52.3 57.2 58.3 58.8 59.1 54.9 57.6 56.5 56.0 62.0 62.8 62.7 63.1

F1 std dev 0.30 0.30 0.17 0.05 0.22 0.22 0.16 0.19 0.19 0.25 0.30 0.34 0.26 0.24 0.29 0.22
F1 confidence 85.0 85.6 85.2 85.4 87.6 88.0 87.9 87.5 87.3 87.8 87.7 87.9 88.2 88.9 88.5 89.0

interval 85.8 86.5 85.7 85.5 88.2 88.6 88.3 88.0 87.9 88.5 88.5 88.8 88.9 89.5 89.4 89.6

# illformed 0.4 0.0 0.2 0.2 0.2 0.0 0.2 0.0 3.2 0.8 2.8 2.0 4.6 3.0 2.8 2.0
# perfect (avg) 235.4 237.4 239.0 239.8 267.0 265.8 266.4 267.2 336.2 350.6 352.4 352.8 358.0 372.4 365.0 367.8
# perfect (all 5) 180 187 183 188 206 213 212 205 212 238 229 226 242 255 239 241
# zero (avg) 4.4 3.4 4.2 4.2 1.6 1.8 1.2 1.8 6.6 3.6 5.0 3.6 5.0 3.2 3.6 2.6
# zero (all 5) 4 3 3 3 1 1 0 1 2 2 1 1 0 0 0 0
# same (all 5) 368 398 379 384 356 368 361 352 347 387 386 365 364 378 361 361

Table 10: Detailed Counter scores for our models on the English dev and test sets of release 2.2.0 and 3.0.0. All
scores are averages of 5 runs. Scores are produced by using DRS-JURY.

Document F1 Comment

Look out! 0.00 Imperative
The dove symbolizes peace. 0.13 Condition + consequence
HBV Union Criticizes Deutsche Bank 0.25 Two multi-word expressions
You can buy stamps at any post office. 0.32 Possibility (can) and quantifier (any)
Fire burns. 0.33 Generic, short
How’s Lanzarote? 0.36 How-question
I’d better drive you home. 0.37 Necessity, infrequent sense of drive
What a lot of books! Do they belong to the university library? 0.38 Multi-sentence
Maybe he is Italian or Spanish. 0.40 Possibility and conjunction
I always get up at 6 o’clock in the morning. 0.40 Necessity + clocktime

Table 11: Sentences of the English 3.0.0 dev set for which our best model (+char +sem) produced the worst DRSs.

Document Diff Comment

Fish surface for air. 0.554 Correctly produced Goal
Oil this bicycle. 0.482 Correctly produced oil as a verb
I’m fed up with this winter, I want spring right now! 0.404 Correctly produced CONTINUATION and Pivot
He’s Argentinian. 0.386 BERT-ONLY failed to produce country and Name
Alas! 0.364 Odd sentence, but correctly produced state.v.01
Fire burns. 0.300 Bad performance for both, BERT-ONLY got a score of 0.0
All journeys begin with a first step. 0.300 BERT-ONLY produced a lot of non-matching clauses
How heavy you are! 0.299 BERT-ONLY produced a lot of non-matching clauses
One plus two is equal to three. 0.252 Correctly produced summation.n.04
He’s not like us. 0.246 Correctly produced Theme and Co-Theme

Table 12: Sentences of the English 3.0.0 dev set for which our best model (+char +sem) produced the best DRSs,
relative to the BERT-ONLY baseline.


