An Empirical Investigation Towards Efficient Multi-Domain Language Model Pre-training

Kristjan Arumae, Qing Sun, Parminder Bhatia


Abstract
Pre-training large language models has become a standard in the natural language processing community. Such models are pre-trained on generic data (e.g. BookCorpus and English Wikipedia) and often fine-tuned on tasks in the same domain. However, in order to achieve state-of-the-art performance on out of domain tasks such as clinical named entity recognition and relation extraction, additional in domain pre-training is required. In practice, staged multi-domain pre-training presents performance deterioration in the form of catastrophic forgetting (CF) when evaluated on a generic benchmark such as GLUE. In this paper we conduct an empirical investigation into known methods to mitigate CF. We find that elastic weight consolidation provides best overall scores yielding only a 0.33% drop in performance across seven generic tasks while remaining competitive in bio-medical tasks. Furthermore, we explore gradient and latent clustering based data selection techniques to improve coverage when using elastic weight consolidation and experience replay methods.
Anthology ID:
2020.emnlp-main.394
Volume:
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)
Month:
November
Year:
2020
Address:
Online
Editors:
Bonnie Webber, Trevor Cohn, Yulan He, Yang Liu
Venue:
EMNLP
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
4854–4864
Language:
URL:
https://aclanthology.org/2020.emnlp-main.394
DOI:
10.18653/v1/2020.emnlp-main.394
Bibkey:
Cite (ACL):
Kristjan Arumae, Qing Sun, and Parminder Bhatia. 2020. An Empirical Investigation Towards Efficient Multi-Domain Language Model Pre-training. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 4854–4864, Online. Association for Computational Linguistics.
Cite (Informal):
An Empirical Investigation Towards Efficient Multi-Domain Language Model Pre-training (Arumae et al., EMNLP 2020)
Copy Citation:
PDF:
https://aclanthology.org/2020.emnlp-main.394.pdf
Video:
 https://slideslive.com/38938956
Code
 aws-health-ai/multi_domain_lm
Data
BC5CDRBookCorpusCoLAGLUEMRPCMultiNLIQNLISQuADSSTSST-2