@inproceedings{bjerva-etal-2020-subjqa,
title = "{SubjQA}: {A} {D}ataset for {S}ubjectivity and {R}eview {C}omprehension",
author = "Bjerva, Johannes and
Bhutani, Nikita and
Golshan, Behzad and
Tan, Wang-Chiew and
Augenstein, Isabelle",
editor = "Webber, Bonnie and
Cohn, Trevor and
He, Yulan and
Liu, Yang",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.emnlp-main.442",
doi = "10.18653/v1/2020.emnlp-main.442",
pages = "5480--5494",
abstract = "Subjectivity is the expression of internal opinions or beliefs which cannot be objectively observed or verified, and has been shown to be important for sentiment analysis and word-sense disambiguation. Furthermore, subjectivity is an important aspect of user-generated data. In spite of this, subjectivity has not been investigated in contexts where such data is widespread, such as in question answering (QA). We develop a new dataset which allows us to investigate this relationship. We find that subjectivity is an important feature in the case of QA, albeit with more intricate interactions between subjectivity and QA performance than found in previous work on sentiment analysis. For instance, a subjective question may or may not be associated with a subjective answer. We release an English QA dataset (SubjQA) based on customer reviews, containing subjectivity annotations for questions and answer spans across 6 domains.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="bjerva-etal-2020-subjqa">
<titleInfo>
<title>SubjQA: A Dataset for Subjectivity and Review Comprehension</title>
</titleInfo>
<name type="personal">
<namePart type="given">Johannes</namePart>
<namePart type="family">Bjerva</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nikita</namePart>
<namePart type="family">Bhutani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Behzad</namePart>
<namePart type="family">Golshan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wang-Chiew</namePart>
<namePart type="family">Tan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Isabelle</namePart>
<namePart type="family">Augenstein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Bonnie</namePart>
<namePart type="family">Webber</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Trevor</namePart>
<namePart type="family">Cohn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yulan</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Subjectivity is the expression of internal opinions or beliefs which cannot be objectively observed or verified, and has been shown to be important for sentiment analysis and word-sense disambiguation. Furthermore, subjectivity is an important aspect of user-generated data. In spite of this, subjectivity has not been investigated in contexts where such data is widespread, such as in question answering (QA). We develop a new dataset which allows us to investigate this relationship. We find that subjectivity is an important feature in the case of QA, albeit with more intricate interactions between subjectivity and QA performance than found in previous work on sentiment analysis. For instance, a subjective question may or may not be associated with a subjective answer. We release an English QA dataset (SubjQA) based on customer reviews, containing subjectivity annotations for questions and answer spans across 6 domains.</abstract>
<identifier type="citekey">bjerva-etal-2020-subjqa</identifier>
<identifier type="doi">10.18653/v1/2020.emnlp-main.442</identifier>
<location>
<url>https://aclanthology.org/2020.emnlp-main.442</url>
</location>
<part>
<date>2020-11</date>
<extent unit="page">
<start>5480</start>
<end>5494</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T SubjQA: A Dataset for Subjectivity and Review Comprehension
%A Bjerva, Johannes
%A Bhutani, Nikita
%A Golshan, Behzad
%A Tan, Wang-Chiew
%A Augenstein, Isabelle
%Y Webber, Bonnie
%Y Cohn, Trevor
%Y He, Yulan
%Y Liu, Yang
%S Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)
%D 2020
%8 November
%I Association for Computational Linguistics
%C Online
%F bjerva-etal-2020-subjqa
%X Subjectivity is the expression of internal opinions or beliefs which cannot be objectively observed or verified, and has been shown to be important for sentiment analysis and word-sense disambiguation. Furthermore, subjectivity is an important aspect of user-generated data. In spite of this, subjectivity has not been investigated in contexts where such data is widespread, such as in question answering (QA). We develop a new dataset which allows us to investigate this relationship. We find that subjectivity is an important feature in the case of QA, albeit with more intricate interactions between subjectivity and QA performance than found in previous work on sentiment analysis. For instance, a subjective question may or may not be associated with a subjective answer. We release an English QA dataset (SubjQA) based on customer reviews, containing subjectivity annotations for questions and answer spans across 6 domains.
%R 10.18653/v1/2020.emnlp-main.442
%U https://aclanthology.org/2020.emnlp-main.442
%U https://doi.org/10.18653/v1/2020.emnlp-main.442
%P 5480-5494
Markdown (Informal)
[SubjQA: A Dataset for Subjectivity and Review Comprehension](https://aclanthology.org/2020.emnlp-main.442) (Bjerva et al., EMNLP 2020)
ACL
- Johannes Bjerva, Nikita Bhutani, Behzad Golshan, Wang-Chiew Tan, and Isabelle Augenstein. 2020. SubjQA: A Dataset for Subjectivity and Review Comprehension. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 5480–5494, Online. Association for Computational Linguistics.