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Abstract

Multi-hop reasoning has been widely studied
in recent years to seek an effective and inter-
pretable method for knowledge graph (KG)
completion. Most previous reasoning meth-
ods are designed for dense KGs with enough
paths between entities, but cannot work well
on those sparse KGs that only contain sparse
paths for reasoning. On the one hand, sparse
KGs contain less information, which makes
it difficult for the model to choose correct
paths. On the other hand, the lack of evi-
dential paths to target entities also makes the
reasoning process difficult. To solve these
problems, we propose a multi-hop reasoning
model named DacKGR over sparse KGs, by
applying novel dynamic anticipation and com-
pletion strategies: (1) The anticipation strat-
egy utilizes the latent prediction of embedding-
based models to make our model perform
more potential path search over sparse KGs.
(2) Based on the anticipation information, the
completion strategy dynamically adds edges
as additional actions during the path search,
which further alleviates the sparseness prob-
lem of KGs. The experimental results on
five datasets sampled from Freebase, NELL
and Wikidata show that our method outper-
forms state-of-the-art baselines. Our codes
and datasets can be obtained from https://

github.com/THU-KEG/DacKGR.

1 Introduction

Knowledge graphs (KGs) represent the world
knowledge in a structured way, and have been
proven to be helpful for many downstream NLP
tasks like query answering (Guu et al., 2015), di-
alogue generation (He et al., 2017) and machine
reading comprehension (Yang et al., 2019). Despite
their wide applications, many KGs still face serious
incompleteness (Bordes et al., 2013), which limits
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Figure 1: An illustration of multi-hop reasoning task
over sparse KG. The missing relations (black dashed
arrows) between entities can be inferred from exist-
ing triples (solid black arrows) through reasoning paths
(bold arrows). However, some relations in the reason-
ing path are missing (red dashed arrows) in sparse KG,
which makes multi-hop reasoning difficult.

their further development and adaption for related
downstream tasks.

To alleviate this issue, some embedding-based
models (Bordes et al., 2013; Dettmers et al., 2018)
are proposed, most of which embed entities and
relations into a vector space and make link predic-
tions to complete KGs. These models focus on
efficiently predicting knowledge but lack necessary
interpretability. In order to solve this problem, Das
et al. (2018) and Lin et al. (2018) propose multi-
hop reasoning models, which use the REINFORCE
algorithm (Williams, 1992) to train an agent to
search over KGs. These models can not only give
the predicted result but also an interpretable path
to indicate the reasoning process. As shown in the
upper part of Figure 1, for a triple query (Olivia
Langdon, child, ?), multi-hop reasoning models
can predict the tail entity Susy Clemens through a
reasoning path (bold arrows).

Although existing multi-hop reasoning models
have achieved good results, they still suffer two
problems on sparse KGs: (1) Insufficient infor-
mation. Compared with normal KGs, sparse KGs

https://github.com/THU-KEG/DacKGR
https://github.com/THU-KEG/DacKGR
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Dataset #Ent #Rel #Fact #degree
mean median

FB15K-237 14,505 237 272,115 19.74 14
WN18RR 40,945 11 86,835 2.19 2
NELL23K 22,925 200 35,358 2.21 1
WD-singer 10,282 135 20,508 2.35 2

Table 1: The statistics of some benchmark KG datasets.
#degree is the outgoing degree of every entity that can
indicate the sparsity level.

contain less information, which makes it difficult
for the agent to choose the correct search direction.
(2) Missing paths. In sparse KGs, some entity
pairs do not have enough paths between them as
reasoning evidence, which makes it difficult for the
agent to carry out the reasoning process. As shown
in the lower part of Figure 1, there is no evidential
path between Mark Twain and English since the
relation publish area is missing. From Table 1 we
can learn that some sampled KG datasets are actu-
ally sparse. Besides, some domain-specific KGs
(e.g., WD-singer) do not have abundant knowledge
and also face the problem of sparsity.

As the performance of most existing multi-hop
reasoning methods drops significantly on sparse
KGs, some preliminary efforts, such as CPL (Fu
et al., 2019), explore to introduce additional text
information to ease the sparsity of KGs. Although
these explorations have achieved promising results,
they are still limited to those specific KGs whose
entities have additional text information. Thus,
reasoning over sparse KGs is still an important but
not fully resolved problem, and requires a more
generalized approach to this problem.

In this paper, we propose a multi-hop reasoning
model named DacKGR, along with two dynamic
strategies to solve the two problems mentioned
above:

Dynamic Anticipation makes use of the limited
information in a sparse KG to anticipate potential
targets before the reasoning process. Compared
with multi-hop reasoning models, embedding-
based models are robust to sparse KGs, because
they depend on every single triple rather than paths
in KG. To this end, our anticipation strategy injects
the pre-trained embedding-based model’s predic-
tions as anticipation information into the states of
reinforcement learning. This information can guide
the agent to avoid aimlessly searching paths.

Dynamic Completion temporarily expands the
part of a KG to enrich the options of path expan-

sion during the reasoning process. In sparse KGs,
many entities only have few relations, which limits
the choice spaces of the agent. Our completion
strategy thus dynamically adds some additional
relations (e.g., red dashed arrows in Figure 1) ac-
cording to the state information of the current entity
during searching reasoning paths. After that, for
the current entity and an additional relation r, we
use a pre-trained embedding-based model to pre-
dict tail entity e. Then, the additional relation r
and the predicted tail entity e will form a potential
action (r, e) and be added to the action space of the
current entity for path expansion.

We conduct experiments on five datasets sam-
pled from Freebase, NELL and Wikidata. The
results show that our model DacKGR outperforms
previous multi-hop reasoning models, which veri-
fies the effectiveness of our model.

2 Problem Formulation

In this section, we first introduce some symbols
and concepts related to normal multi-hop reason-
ing, and then formally define the task of multi-hop
reasoning over sparse KGs.

Knowledge graph KG can be formulated as
KG = {E ,R, T }, where E andR denote entity set
and relation set respectively. T = {(es, rq, eo)} ⊆
E ×R× E is triple set, where es and eo are head
and tail entities respectively, and rq is the relation
between them. For every KG, we can use the aver-
age out-degree Dout

avg of each entity (node) to define
its sparsity. Specifically, if Dout

avg of a KG is larger
than a threshold, we can say it is a dense or normal
KG, otherwise, it is a sparse KG.

Given a graph KG and a triple query (es, rq, ?),
where es is the source entity and rq is the query re-
lation, multi-hop reasoning for knowledge graphs
aims to predict the tail entity eo for (es, rq, ?).
Different from previous KG embedding tasks,
multi-hop reasoning also gives a supporting path
{(es, r1, e1), (e1, r2, e2) . . . , (en−1, rn, eo)} over
KG as evidence. As mentioned above, we mainly
focus on the multi-hop reasoning task over sparse
KGs in this paper.

3 Methodology

In this section, we first introduce the whole rein-
forcement learning framework for multi-hop rea-
soning, and then detail our two strategies designed
for the sparse KGs, i.e., dynamic anticipation and
dynamic completion. The former strategy intro-
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Figure 2: An illustration of our policy network with dynamic anticipation and dynamic completion strategies. The
vector of ep is the prediction information introduced in Section 3.3. We use the current state to dynamically select
some relations, and use the pre-trained embedding-based model to perform link prediction to obtain additional
action space. The original action space will be merged with the additional action space to form a new action space.

duces the guidance information from embedding-
based models to help multi-hop models find the
correct direction on sparse KGs. Based on this
strategy, the dynamic completion strategy intro-
duces some additional actions during the reasoning
process to increase the number of paths, which
can alleviate the sparsity of KGs. Following Lin
et al. (2018), the overall framework of DacKGR is
illustrated in Figure 2.

3.1 Reinforcement Learning Framework

In recent years, multi-hop reasoning for KGs has
been formulated as a Markov Decision Process
(MDP) over KG (Das et al., 2018): given a triple
query (es, rq, ?), the agent needs to start from the
head entity es, continuously select the edge (rela-
tion) corresponding to the current entity with maxi-
mum probability as the direction, and jump to the
next entity until the maximum number of hops T .
Following previous work (Lin et al., 2018), the
MDP consists of the following components:

State In the process of multi-hop reasoning,
which edge (relation) the agent chooses depends
not only on the query relation rq and the current
entity et, but also on the previous historical search-
ing path. Therefore, the state of the t-th hop can be
defined as st = (rq, et, ht), where ht is the repre-
sentation of the historical path. Specifically, we use

an LSTM to encode the historical path information,
ht is the output of LSTM at the t-th step.

Action For a state st = (rq, et, ht), if there is
a triple (et, rn, en) in the KG, (rn, en) is an action
of the state st. All actions of the state st make up its
action space At = {(r, e)|(et, r, e) ∈ T }. Besides,
for every state st, we also add an additional action
(rLOOP, et), where LOOP is a manually added self-
loop relation. It allows the agent to stay at the
current entity, which is similar to a “STOP” action.

Transition If the current state is st =
(rq, et, ht) and the agent chooses (rn, en) ∈ At as
the next action, then the current state st will be con-
verted to st+1 = (rq, en, ht+1). In this paper, we
limit the maximum number of hops to T , and the
transition will end at the state sT = (rq, eT , hT ).

Reward For a given query (es, rq, ?) with the
golden tail entity eo, if the agent finally stops at
the correct entity, i.e., eT = eo, the reward is one,
otherwise, the reward is a value between 0 and
1 given by the function f(es, rq, eT ), where the
function f is given by a pre-trained knowledge
graph embedding (KGE) model for evaluating the
correctness of the triple (es, rq, eT ).

3.2 Policy Network

For the above MDP, we need a policy network
to guide the agent to choose the correct action in
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different states.
We represent entities and relations in KG as vec-

tors in a semantic space, and then the action (r, e) at
the step t can be represented as at = [r; e], where r
and e are the vectors of r and e respectively. As we
mentioned in Section 3.1, we use an LSTM to store
the historical path information. Specifically, the
representation of each action selected by the agent
will be fed into the LSTM to generate historical
path information so far,

ht = LSTM(ht−1,at−1). (1)

The representation of the t-th state st = (rq, et, ht)
can be formulated as

st = [rq; et;ht]. (2)

After that, we represent the action space by stack-
ing all actions in At as At ∈ R|At|×2d, where d is
the dimension of the entity and relation vector. The
policy network is defined as,

πθ(at|st) = σ(At(W1ReLU(W2st))), (3)

where σ is the softmax operator, W1 and W2 are
two linear neural networks, and πθ(at|st) is the
probability distribution over all actions in At.

3.3 Dynamic Anticipation
As reported in previous work (Das et al., 2018;
Lin et al., 2018), although the KGE models are
not interpretable, they can achieve better results
than the multi-hop reasoning models on most KGs.
This phenomenon is more obvious on the sparse
KG (refer to experimental results in Table 3) since
KGE models are more robust as they do not rely
on the connectivity of the KGs.

Inspired by the above phenomenon, we pro-
pose a new strategy named dynamic anticipation,
which introduces the prediction information of the
embedding-based models into the multi-hop rea-
soning models to guide the model learning. Specif-
ically, for a triple query (es, rq, ?), we use the pre-
trained KGE models to get the probability vector of
all entities being the tail entity. Formally, the proba-
bility vector can be formulated as p ∈ R|E|, where
the value of the i-th dimension of p represents the
probability that ei is the correct tail entity.

For the dynamic anticipation strategy, we change
the state representation in Equation 2 to:

st = [ep; rq; et;ht], (4)

where ep is prediction information given by KGE
models. In this paper, we use the following three
strategies to generate ep: (1) Sample strategy. We
sample an entity based on probability distribution
p and denote its vector as ep. (2) Top-one strategy.
We select the entity with the highest probability in
p. (3) Average strategy. We take the weighted av-
erage of the vectors of all entities according to the
probability distribution p as the prediction infor-
mation ep. In experiments, we choose the strategy
that performs best on the valid set.

3.4 Dynamic Completion
In sparse KGs, there are often insufficient eviden-
tial paths between head and tail entities, so that the
performance of multi-hop reasoning models will
drop significantly.

In order to solve the above problems, we propose
a strategy named dynamic completion to dynami-
cally augment the action space of each entity during
reasoning process. Specifically, for the current state
st, its candidate set of additional actions can be de-
fined as Ct = {(r, e)|r ∈ R ∧ e ∈ E ∧ (et, r, e) 6∈
T }. We need to select some actions with the high-
est probability from Ct as additional actions, where
the probability can be defined as:

p((r, e)|st) = p(r|st)p(e|r, st). (5)

However, the candidate setCt is too large, it will be
time-consuming to calculate the probability of all
actions in Ct, so we adopt an approximate pruning
strategy. Specifically, We first select some relations
with the highest probability using p(r|st), and then
select entities with the highest probability for these
relations using p(e|r, st).

For the current state st, we calculate the attention
value over all relations as p(r|st),

w = Softmax(MLP(st) · [r1, · · · , r|R|]). (6)

We define a parameter α to control the proportion
of actions that need to be added. Besides, we also
have a parameter M which represents the maxi-
mum number of additional actions. Therefore, the
number of additional actions can be defined as,

Nadd = min(dαNe,M), (7)

whereN is the action space size of the current state.
After we have the attention vector w, we select top
x relations with the largest attention values in w to
form a new relation set Radd = {r1, r2, · · · , rx}.
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Dataset #Ent #Rel #Fact #degree
mean median

FB15K-237-10% 11,512 237 60,985 5.8 4
FB15K-237-20% 13,166 237 91,162 7.5 5
FB15K-237-50% 14,149 237 173,830 13.0 13
NELL23K 22,925 200 35,358 2.21 1
WD-singer 10,282 135 20,508 2.35 2

Table 2: Statistics of five datasets in experiments.

For every relation ri ∈ Radd and the current entity
et, we use the pre-trained KGE models to predict
the probability distribution of the tail entity for
triple query (et, r

i, ?) as p(e|ri, st). We only keep
the k entities with the highest probability, which
form k additional actions {(ri, e1

ri
), · · · , (ri, ek

ri
)}

for triple query (et, r
i, ?). Finally, all additional ac-

tions make up the additional action space Aaddt for
st. Here, k is a parameter, and x can be calculated
using previous parameters,

x = dNadd/ke. (8)

During the multi-hop reasoning process, we
dynamically generate the additional action space
Aaddt for every state st. This additional action
space will be added to the original action space
At and make up a new larger action space,

At = At +Aaddt . (9)

Based on the previous dynamic anticipation strat-
egy, the dynamic completion strategy can generate
more accurate action space since the state contains
more prediction information.

3.5 Policy Optimization

We use the typical REINFORCE (Williams, 1992)
algorithm to train our agent and optimize the pa-
rameters of the policy network. Specifically, the
training process is obtained by maximizing the ex-
pected reward for every triple query in the training
set,

J(θ) = E(es,r,eo)∈KGEa1,...,aT−1∈πθ [R(sT |es, r)]. (10)

The parameters θ of the policy network are opti-
mized as follow,

∇θJ(θ) ≈ ∇θ
∑
t

R(sT |es, r) log πθ(at|st)

θ = θ + β∇θJ(θ),
(11)

where β is the learning rate.

4 Experiments

4.1 Datasets

In this paper, we use five datasets sampled from
Freebase (Bollacker et al., 2008), NELL (Carlson
et al., 2010) and Wikidata (Vrandečić and Krötzsch,
2014) for experiments. Specifically, in order to
study the performance of our method on KGs with
different degrees of sparsity, we constructed three
datasets based on FB15K-237 (Toutanova et al.,
2015), i.e., FB15K-237-10%, FB15K-237-20%
and FB15K-237-50%. These three datasets ran-
domly retain 10%, 20% and 50% triples of FB15K-
237 respectively.

In addition, we also construct two datasets
NELL23K and WD-singer from NELL and Wiki-
data, where WD-singer is a dataset of singer do-
main from Wikidata. For NELL23K, we first ran-
domly sample some entities from NELL and then
sample triples containing these entities to form the
dataset. For WD-singer, we first find all concepts
related to singer in Wikidata, then use the entities
corresponding to these concepts to build the entity
list. After that, we expand the entity list appropri-
ately, and finally use the triples containing entities
in the entity list to form the final dataset. The statis-
tics of our five datasets are listed in Table 2.

4.2 Experiment Setup

Baseline Models In our experiments, we select
some KGE models and multi-hop reasoning models
for comparison. For embedding-based models, we
compared with TransE (Bordes et al., 2013), Dist-
Mult (Yang et al., 2015), ConvE (Dettmers et al.,
2018) and TuckER (Balazevic et al., 2019). For
multi-hop reasoning, we evaluate the following five
models 1, Neural Logical Programming (NeuralLP)
(Yang et al., 2017), Neural Theorem Prover (NTP)
(Rocktäschel and Riedel, 2017), MINERVA (Das
et al., 2018), MultiHopKG (Lin et al., 2018) and
CPL 2 (Fu et al., 2019) . Besides, our model has
three variations, DacKGR (sample), DacKGR (top)
and DacKGR (avg), which use sample, top-one
and average strategy (introduced in Section 3.3)
respectively.
Evaluation Protocol For every triple (es, rq, eo)
in the test set, we convert it to a triple query
(es, rq, ?), and then use embedding-based models

1M-walk does not provide the necessary source codes and
we do not compare with it.

2CPL can not run on NELL23K since its entities do not
have additional text information.
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Model
FB15K-237-10% FB15K-237-20% FB15K-237-50% NELL23K WD-singer

MRR @3 @10 MRR @3 @10 MRR @3 @10 MRR @3 @10 MRR @3 @10

TransE 10.5 15.9 27.9 12.3 18.0 31.3 17.7 23.4 40.4 8.4 10.9 24.7 21.0 32.1 44.6
DisMult 7.4 7.5 16.9 11.3 11.9 24.0 18.0 20.2 38.1 11.6 11.9 23.2 24.4 27.0 39.8
ConvE 24.5 26.2 39.1 26.1 28.3 41.8 31.3 34.2 50.1 27.6 30.1 46.4 44.8 47.8 56.9
TuckER 25.2 27.2 40.4 26.6 28.8 42.8 31.4 34.2 50.1 26.4 28.9 46.7 42.1 47.1 57.1

NeuralLP 7.9 7.2 13.8 11.2 11.2 17.9 18.2 19.2 24.6 12.2 13.1 26.3 31.9 33.4 48.2
NTP 8.3 11.4 16.9 17.3 16.1 21.7 22.2 23.1 30.7 13.2 14.9 24.1 29.2 31.1 44.2
MINERVA 7.8 7.8 12.2 15.9 16.4 22.7 23.0 24.0 31.1 15.0 15.2 25.4 33.5 37.4 44.9
MultiHopKG 13.6 14.6 21.6 23.0 25.2 35.5 29.2 31.7 44.9 17.8 18.8 29.7 35.6 41.1 47.5
CPL 11.1 12.2 16.8 17.5 18.4 25.7 26.4 28.5 36.8 - - - 34.2 40.1 46.3

DacKGR (sample) 21.8 23.9 33.7 24.7 27.2 39.1 29.3 32.0 45.7 20.1 21.6 33.2 38.1 42.3 50.6
DacKGR (top) 21.9 23.9 33.5 24.4 27.1 38.9 29.3 31.8 45.8 19.1 20.0 30.8 37.0 40.5 46.5
DacKGR (avg) 21.5 23.2 33.4 24.2 26.6 38.8 29.1 31.9 45.4 17.1 18.6 28.2 36.4 40.1 48.0

Table 3: Link prediction results on five datasets from Freebase, NELL and Wikidata. @3 and @10 denote Hits@3
and Hits@10 metrics, respectively. All metrics are multiplied by 100. The best score of multi-hop reasoning
models is in bold, and the best score of embedding-based models is underlined.

or multi-hop reasoning models to get the ranking
list of the tail entity. Following the previous work
(Bordes et al., 2013), we use the “filter” strategy in
our experiments. We use two metrics: (1) the mean
reciprocal rank of all correct tail entities (MRR),
and (2) the proportion of correct tail entities rank-
ing in the top K (Hits@K) for evaluation.
Implementation Details In our implementation,
we set the dimension of the entity and relation vec-
tors to 200, and use the ConvE model as the pre-
trained KGE for both dynamic anticipation and dy-
namic completion strategies. In addition, we use a
3-layer LSTM and set its hidden dimension to 200.
Following previous work (Das et al., 2018), we use
Adam (Kingma and Ba, 2014) as the optimizer. For
the parameters α,M and k in the dynamic comple-
tion strategy, we choose them from {0.5, 0.33, 0.25,
0.2}, {10, 20, 40, 60} and {1, 2, 3, 5} respectively.
We select the best hyperparameters via grid search
according to Hits@10 on the valid dataset. Besides,
for every triple (es, rq, eo) in the training set, we
also add a reverse triple (eo, r

inv
q , es).

4.3 Link Prediction Results

The left part of Table 3 shows the link prediction
results on FB15K-237-10%, FB15K-237-20% and
FB15K-237-50%. From the table, we can learn
that our model outperforms previous multi-hop
reasoning models on these three datasets, espe-
cially on FB15K-237-10%, where our model gains
significant improvements compared with the best
multi-hop reasoning baseline MultiHopKG (which
is about 56.0% relative improvement on Hits@10).

When we compare the experimental results on
these three datasets horizontally (from right to left

in Table 3), we can find that as the KG becomes
sparser, the relative improvement of our model
compared with the baseline models is more promi-
nent. This phenomenon shows that our model is
more robust to the sparsity of the KG compared to
the previous multi-hop reasoning model.

As shown in previous work (Lin et al., 2018;
Fu et al., 2019), KGE models often achieve bet-
ter results than multi-hop reasoning models. This
phenomenon is more evident on sparse KGs. The
results of these embedding-based models are only
used as reference because they are different types
of models from multi-hop reasoning and are not
interpretable.

The right part of Table 3 shows the link predic-
tion results on NELL23K and WD-singer. From
the table, we can find a phenomenon similar to that
in the left part of Table 3. Our model performs
better than previous multi-hop reasoning models,
which indicates that our model can be adapted to
many other knowledge graphs.

From the last three rows of Table 3, we can learn
that the sample strategy in Section 3.3 performs
better than top-one and average strategies in most
cases. This is because these two strategies lose
some information. The top-one strategy only re-
tains the entity with the highest probability. The
average strategy uses a weighted average of entity
vectors, which may cause the features of different
vectors to be canceled out.

4.4 Ablation Study

In this paper, we design two strategies for sparse
KGs. In order to study the contributions of these
two strategies to the performance of our model,
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Figure 3: The top and bottom rows show the DC hits ratio change w.r.t. #epoch and α respectively.

Model MRR Hits@1 Hits@3 Hits@10

MultiHopKG 23.0 16.9 25.2 35.5
DacKGR (w/o DC) 23.5 17.2 25.8 36.5
DacKGR (w/o DA) 24.2 17.7 26.6 37.9

DacKGR 24.7 17.8 27.2 39.1

Table 4: Ablation study results on FB15K-237-20%.
DC and DA denote dynamic completion and dynamic
anticipation strategy respectively.

we conduct an ablation experiment by removing
dynamic anticipation (DA) or dynamic completion
(DC) strategy on FB15K-237-20% dataset.

As shown in Table 4, removing either the DA
or DC strategy will reduce the effectiveness of the
model, which demonstrates that both strategies con-
tribute to our model. Moreover, we can learn that
using either strategy individually will enable our
model to achieve better results than the baseline
model. Specifically, the model using the DC strat-
egy alone performs better than the model using the
DA strategy alone, which is predictable, since the
DA strategy only allows the agent to make a cor-
rect choice, and will not substantially alleviate the
sparsity of KGs.

4.5 Analysis

In the dynamic completion (DC) strategy, we dy-
namically provide some additional actions for every
state, which enrich the selection space of the agent
and ease the sparsity of KGs. However, will the
agent choose these additional actions, or in other
words, do these additional actions really work?

In this section, we analyze the results of the DC
hits ratio, which indicates the proportion of the
agent selecting additional actions (e.g., choosing
actions in Aaddt for st). In the first step, we an-

alyze the change of DC hits ratio as the training
progresses, which is shown in the first row of Fig-
ure 3. From this figure, we can learn that for most
KGs (except FB15K-237-10%), DC hits ratio is
relatively high at the beginning of training, then
it will drop sharply and tend to stabilize. This is
reasonable because there is some noise in the addi-
tional actions. In the beginning, the agent cannot
distinguish the noise part and choose them as the
same as the original action. But as the training
proceeds, the agent can identify the noise part, and
gradually reduces the selection ratio of additional
actions. For FB15K-237-10%, DC hits ratio will
decrease first and then increase. This is because
many triples have been removed in FB15K-237-
10%, which exacerbates the incompleteness of the
dataset. The additional actions work more effec-
tively in this situation and increase the probability
of correct reasoning.

In the second row of the Figure 3, we give the
effect of parameter α (indicates the proportion of
actions that need to be added) described in Section
3.4 on the DC hits ratio. Specifically, We use the
average DC hits ratio results of the last five epochs
as the final result. From this figure, we can find
that for most datasets, DC hits ratio will gradually
increase as α increases. This is as expected because
a larger α means more additional actions, and the
probability that they are selected will also increase.
It is worth noting that on the FB15K-237-50%, DC
hits ratio hardly changes with α. This is because
the sparsity of FB15K-237-50% is not severe and
does not rely on additional actions.

4.6 Case Study
In Table 5, we give an example of triple query and
three reasoning paths with the top-3 scores given
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Triple query: (Kirkby Lunn, country of citizenship, ?)

1 Kirkby Lunn
place of burial−−−−−−−−→ London country−−−−→ United Kingdom LOOP−−−→ United Kingdom

2 Kirkby Lunn
student of−−−−−→ Jacques Bouhy

country of citizenship−−−−−−−−−−−→ Belgium LOOP−−−→ Belgium

3 Kirkby Lunn
student of−−−−−→ Albert Visetti student−−−−→ Agnes Nicholls

country of citizenship−−−−−−−−−−−→ United Kingdom

Table 5: Case study of our model on link prediction experiment. For the triple query, we show the three reasoning
paths with the top-3 scores via beam search. The relation and entity in bold are additional actions generated using
dynamic completion strategy. The correct entities for the triple query are underline.

by our model DacKGR. From the first path, we
can learn that our dynamic completion strategy can
provide agents with some additional actions that are
not in the dataset, and further form a reasoning path.
Besides, as shown in the third path, DacKGR can
also use the paths that exist in the KG to perform
multi-hop reasoning.

5 Related Work

5.1 Knowledge Graph Embedding

Knowledge graph embedding (KGE) aims to rep-
resent entities and relations in KGs with their cor-
responding low-dimensional embeddings. It then
defines a score function f(es, rq, et) with embed-
dings to measure the correct probability of each
triple. Specifically, most KGE models can be di-
vided into three categories (Wang et al., 2017):
(1) Translation-based models (Bordes et al., 2013;
Wang et al., 2014; Lin et al., 2015; Sun et al., 2018)
formalize the relation as a translation from a head
entity to a tail entity, and often use distance-based
score functions derived from these translation op-
erations. (2) Tensor-factorization based models
(Nickel et al., 2011; Yang et al., 2015; Balazevic
et al., 2019) formulate KGE as a three-way ten-
sor decomposition task and define the score func-
tion according to the decomposition operations.
(3) Neural network models (Socher et al., 2013;
Dettmers et al., 2018; Nguyen et al., 2018; Shang
et al., 2019) usually design neural network mod-
ules to enhance the expressive abilities. Generally,
given a triple query (es, rq, ?), KGE models select
the entity eo, whose score function f(es, rq, eo) has
the highest score as the final prediction. Although
KGE models are efficient, they lack interpretability
of their predictions.

5.2 Multi-Hop Reasoning

Different from embedding-based models, multi-
hop reasoning for KGs aims to predict the tail entity
for every triple query (es, rq, ?) and meanwhile pro-

vide a reasoning path to support the prediction. Be-
fore multi-hop reasoning task is formalized, there
are some models on relation path reasoning task,
which aims to predict the relation between entities
like (es, ?, eo) using path information. DeepPath
(Xiong et al., 2017) first adopts reinforcement learn-
ing (RL) framework for relation path reasoning,
which inspires much later work (e.g., DIVA (Chen
et al., 2018) and AttnPath (Wang et al., 2019)).

MINERVA (Das et al., 2018) is the first model
that uses REINFORCE algorithm to do the multi-
hop reasoning task. To make the training process of
RL models stable, Shen et al. propose M-Walk to
solve the reward sparsity problem using off-policy
learning. MultiHopKG (Lin et al., 2018) further
improves MINERVA using action dropout and re-
ward shaping. Lv et al. (2019) propose MetaKGR
to address the new task that multi-hop reasoning on
few-shot relations. In order to adapt RL models to a
dynamically growing KG, Fu et al. (2019) propose
CPL to do multi-hop reasoning and fact extraction
jointly. In addition to the above RL-based reason-
ing models, there are some other neural symbolic
models for multi-hop reasoning. NTP (Rocktäschel
and Riedel, 2017) and NeuralLP (Yang et al., 2017)
are two end-to-end reasoning models that can learn
logic rules from KGs automatically.

Compared with KGE models, multi-hop rea-
soning models sacrifice some accuracy for inter-
pretability, which is beneficial to fine-grained guid-
ance for downstream tasks.

6 Conclusion

In this paper, we study the task that multi-hop rea-
soning over sparse knowledge graphs. The per-
formance of previous multi-hop reasoning models
on sparse KGs will drop significantly due to the
lack of evidential paths. In order to solve this prob-
lem, we propose a reinforcement learning model
named DacKGR with two strategies (i.e., dynamic
anticipation and dynamic completion) designed for
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sparse KGs. These strategies can ease the sparsity
of KGs. In experiments, we verify the effectiveness
of DacKGR on five datasets. Experimental results
show that our model can alleviate the sparsity of
KGs and achieve better results than previous multi-
hop reasoning models. However, there is still some
noise in the additional actions given by our model.
In future work, we plan to improve the quality of
the additional actions.
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