@inproceedings{chu-etal-2020-solving,
title = "{S}olving {H}istorical {D}ictionary {C}odes with a {N}eural {L}anguage {M}odel",
author = "Chu, Christopher and
Valenti, Raphael and
Knight, Kevin",
editor = "Webber, Bonnie and
Cohn, Trevor and
He, Yulan and
Liu, Yang",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.emnlp-main.471",
doi = "10.18653/v1/2020.emnlp-main.471",
pages = "5845--5854",
abstract = "We solve difficult word-based substitution codes by constructing a decoding lattice and searching that lattice with a neural language model. We apply our method to a set of enciphered letters exchanged between US Army General James Wilkinson and agents of the Spanish Crown in the late 1700s and early 1800s, obtained from the US Library of Congress. We are able to decipher 75.1{\%} of the cipher-word tokens correctly.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="chu-etal-2020-solving">
<titleInfo>
<title>Solving Historical Dictionary Codes with a Neural Language Model</title>
</titleInfo>
<name type="personal">
<namePart type="given">Christopher</namePart>
<namePart type="family">Chu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Raphael</namePart>
<namePart type="family">Valenti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="family">Knight</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Bonnie</namePart>
<namePart type="family">Webber</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Trevor</namePart>
<namePart type="family">Cohn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yulan</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We solve difficult word-based substitution codes by constructing a decoding lattice and searching that lattice with a neural language model. We apply our method to a set of enciphered letters exchanged between US Army General James Wilkinson and agents of the Spanish Crown in the late 1700s and early 1800s, obtained from the US Library of Congress. We are able to decipher 75.1% of the cipher-word tokens correctly.</abstract>
<identifier type="citekey">chu-etal-2020-solving</identifier>
<identifier type="doi">10.18653/v1/2020.emnlp-main.471</identifier>
<location>
<url>https://aclanthology.org/2020.emnlp-main.471</url>
</location>
<part>
<date>2020-11</date>
<extent unit="page">
<start>5845</start>
<end>5854</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Solving Historical Dictionary Codes with a Neural Language Model
%A Chu, Christopher
%A Valenti, Raphael
%A Knight, Kevin
%Y Webber, Bonnie
%Y Cohn, Trevor
%Y He, Yulan
%Y Liu, Yang
%S Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)
%D 2020
%8 November
%I Association for Computational Linguistics
%C Online
%F chu-etal-2020-solving
%X We solve difficult word-based substitution codes by constructing a decoding lattice and searching that lattice with a neural language model. We apply our method to a set of enciphered letters exchanged between US Army General James Wilkinson and agents of the Spanish Crown in the late 1700s and early 1800s, obtained from the US Library of Congress. We are able to decipher 75.1% of the cipher-word tokens correctly.
%R 10.18653/v1/2020.emnlp-main.471
%U https://aclanthology.org/2020.emnlp-main.471
%U https://doi.org/10.18653/v1/2020.emnlp-main.471
%P 5845-5854
Markdown (Informal)
[Solving Historical Dictionary Codes with a Neural Language Model](https://aclanthology.org/2020.emnlp-main.471) (Chu et al., EMNLP 2020)
ACL