@inproceedings{yuan-etal-2020-interactive,
title = "Interactive Refinement of Cross-Lingual Word Embeddings",
author = "Yuan, Michelle and
Zhang, Mozhi and
Van Durme, Benjamin and
Findlater, Leah and
Boyd-Graber, Jordan",
editor = "Webber, Bonnie and
Cohn, Trevor and
He, Yulan and
Liu, Yang",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.emnlp-main.482/",
doi = "10.18653/v1/2020.emnlp-main.482",
pages = "5984--5996",
abstract = "Cross-lingual word embeddings transfer knowledge between languages: models trained on high-resource languages can predict in low-resource languages. We introduce CLIME, an interactive system to quickly refine cross-lingual word embeddings for a given classification problem. First, CLIME ranks words by their salience to the downstream task. Then, users mark similarity between keywords and their nearest neighbors in the embedding space. Finally, CLIME updates the embeddings using the annotations. We evaluate CLIME on identifying health-related text in four low-resource languages: Ilocano, Sinhalese, Tigrinya, and Uyghur. Embeddings refined by CLIME capture more nuanced word semantics and have higher test accuracy than the original embeddings. CLIME often improves accuracy faster than an active learning baseline and can be easily combined with active learning to improve results."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="yuan-etal-2020-interactive">
<titleInfo>
<title>Interactive Refinement of Cross-Lingual Word Embeddings</title>
</titleInfo>
<name type="personal">
<namePart type="given">Michelle</namePart>
<namePart type="family">Yuan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mozhi</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Benjamin</namePart>
<namePart type="family">Van Durme</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leah</namePart>
<namePart type="family">Findlater</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jordan</namePart>
<namePart type="family">Boyd-Graber</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Bonnie</namePart>
<namePart type="family">Webber</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Trevor</namePart>
<namePart type="family">Cohn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yulan</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Cross-lingual word embeddings transfer knowledge between languages: models trained on high-resource languages can predict in low-resource languages. We introduce CLIME, an interactive system to quickly refine cross-lingual word embeddings for a given classification problem. First, CLIME ranks words by their salience to the downstream task. Then, users mark similarity between keywords and their nearest neighbors in the embedding space. Finally, CLIME updates the embeddings using the annotations. We evaluate CLIME on identifying health-related text in four low-resource languages: Ilocano, Sinhalese, Tigrinya, and Uyghur. Embeddings refined by CLIME capture more nuanced word semantics and have higher test accuracy than the original embeddings. CLIME often improves accuracy faster than an active learning baseline and can be easily combined with active learning to improve results.</abstract>
<identifier type="citekey">yuan-etal-2020-interactive</identifier>
<identifier type="doi">10.18653/v1/2020.emnlp-main.482</identifier>
<location>
<url>https://aclanthology.org/2020.emnlp-main.482/</url>
</location>
<part>
<date>2020-11</date>
<extent unit="page">
<start>5984</start>
<end>5996</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Interactive Refinement of Cross-Lingual Word Embeddings
%A Yuan, Michelle
%A Zhang, Mozhi
%A Van Durme, Benjamin
%A Findlater, Leah
%A Boyd-Graber, Jordan
%Y Webber, Bonnie
%Y Cohn, Trevor
%Y He, Yulan
%Y Liu, Yang
%S Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)
%D 2020
%8 November
%I Association for Computational Linguistics
%C Online
%F yuan-etal-2020-interactive
%X Cross-lingual word embeddings transfer knowledge between languages: models trained on high-resource languages can predict in low-resource languages. We introduce CLIME, an interactive system to quickly refine cross-lingual word embeddings for a given classification problem. First, CLIME ranks words by their salience to the downstream task. Then, users mark similarity between keywords and their nearest neighbors in the embedding space. Finally, CLIME updates the embeddings using the annotations. We evaluate CLIME on identifying health-related text in four low-resource languages: Ilocano, Sinhalese, Tigrinya, and Uyghur. Embeddings refined by CLIME capture more nuanced word semantics and have higher test accuracy than the original embeddings. CLIME often improves accuracy faster than an active learning baseline and can be easily combined with active learning to improve results.
%R 10.18653/v1/2020.emnlp-main.482
%U https://aclanthology.org/2020.emnlp-main.482/
%U https://doi.org/10.18653/v1/2020.emnlp-main.482
%P 5984-5996
Markdown (Informal)
[Interactive Refinement of Cross-Lingual Word Embeddings](https://aclanthology.org/2020.emnlp-main.482/) (Yuan et al., EMNLP 2020)
ACL
- Michelle Yuan, Mozhi Zhang, Benjamin Van Durme, Leah Findlater, and Jordan Boyd-Graber. 2020. Interactive Refinement of Cross-Lingual Word Embeddings. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 5984–5996, Online. Association for Computational Linguistics.