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Abstract

In this paper, we introduce a novel BERT-
enhanced Relational Sentence Ordering Net-
work (referred to as BERSON) by leverag-
ing BERT for capturing a better dependency
relationship among sentences to enhance the
coherence modeling for the entire paragraph.
In particular, we develop a new Relational
Pointer Decoder (referred as RPD) by in-
corporating the relative ordering information
into the pointer network with a Deep Rela-
tional Module (referred as DRM), which uti-
lizes BERT to exploit the deep semantic con-
nection and relative ordering between sen-
tences. This enables us to strengthen both lo-
cal and global dependencies among sentences.
Extensive evaluations are conducted on six
public datasets. The experimental results
demonstrate the effectiveness and promise of
BERSON, showing a significant improvement
over the state-of-the-art by a wide margin.

1 Introduction

Coherence modeling is one of the essential aspects
of natural language processing (Xu et al., 2019;
Mesgar et al., 2019; Moon et al., 2019; Farag and
Yannakoudakis, 2019). A coherent text can fa-
cilitate understanding and avoid the confusion for
reading comprehension. The Sentence Ordering
task (Barzilay and Lapata, 2008) aims to recon-
struct a coherent paragraph from an unordered set
of sentences and has shown to be beneficial to im-
prove the coherence in many NLP tasks includ-
ing multi-document summarization (Barzilay and
Elhadad, 2002; Nallapati et al., 2017), conversa-
tional analysis (Zeng et al., 2018), and text gener-
ation (Konstas and Lapata, 2013; Holtzman et al.,
2018). Table 1 shows an example of this task.

In recent years, several approaches based on
ranking or sorting frameworks have been devel-
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An unordered set of sentences Coherent paragraph

1 Dan was walking during the night. 1 Dan was walking during the night.
3 They tried to steal his book bag. 2 A group of thieves surrounded him.
4 A bystander noticed them. 3 They tried to steal his book bag.
2 A group of thieves surrounded him. 4 A bystander noticed them.
5 But she continued to walk away. 5 But she continued to walk away.

Table 1: Illustration of the sentence ordering task. It
aims to reorganize an unordered set of sentences into a
coherent paragraph.

oped to deal with this task. RankTxNet (Ku-
mar et al., 2020) computes a score for each sen-
tence and sorts these scores with ranking based
loss functions. Pairwise Model (Chen et al.,
2016) adopts a pairwise ranking algorithm to learn
the relative order of each sentence pair. B-TSort
(Prabhumoye et al., 2020) predicts the constraint
between two sentences and uses the topological
sort technique to find the ordering.

On the other hand, to better capture the global
coherence, pointer network (Vinyals et al., 2015)
has been gradually used for the decoder of the or-
dering model. It is able to capture the paragraph-
level contextual information for generating an or-
dered sequence with the highest coherence prob-
ability (Gong et al., 2016; Logeswaran et al.,
2018; Cui et al., 2018; Yin et al., 2019). Further,
HAN (Wang and Wan, 2019) and TGCM (Oh
et al., 2019) introduce the attention mechanism
(Vaswani et al., 2017), and FUDecoder (Yin et al.,
2020) proposes pairwise ordering prediction mod-
ules to enhance the traditional pointer network.

Despite having achieved great successes, pair-
wise ranking and pointer network-based ordering
approaches have a few problems. The former fo-
cuses on learning the local relationship between
sentence pairs, but may have trouble in capturing
the global interactions among all the sentences.
The latter overlooks the importance of learning
relative order between sentence pairs through the
encoder-decoder, and lacks enough local interac-
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Figure 1: The architecture of the proposed BERSON. Given an unordered set of sentences, our BERT-based
Hierarchical Relational Sentence Encoder first builds the high-level representation for each input sentence. Then,
a self-attention based paragraph encoder is employed for paragraph encoding. Finally, the proposed Relational
Pointer Decoder generates an ordered out sequence. For the sentence generation at the 3rd timestep in the decoder,
s1 and s2 are the previous sorted sentences, and s3, s4, and s5 are the unsorted ones. Here, we use the candidate
sentence s3 as an example to illustrate how to encode the relative ordering information for it in the pointer network
based on Deep Relational Module. Please refer to Section 2.4 for more details of the decoder.

tions among sentences.
To address the above limitations, in this pa-

per, we propose a novel BERT-enhanced Rela-
tional Sentence Ordering Network (referred to as
BERSON) by integrating BERT (Devlin et al.,
2019) with the pointer network to fully exploit
the pairwise relationships between sentences for a
better coherence modeling. Specifically, we first
introduce a BERT-based Hierarchical Relational
Sentence Encoder, which uses sentence pairs as
the input to the model and learns the high-level
representation for each sentence. Next, a Self-
Attention based Paragraph Encoder is adopted for
paragraph encoding.

Building upon the above pairwise sentence and
paragraph encoding, a novel Relational Pointer
Decoder (referred to as RPD) is developed by in-
corporating the informative relative ordering in-
formation into the pointer network with a Deep
Relational Module (referred to as DRM). This
module leverages the Next Sentence Prediction
objective of BERT to learn the relative ordering
between sentences and constructs a pairwise re-
lationship representation for each sentence pair,
which helps RPD not only exploit the global ori-
entation information among unordered sentences
but also consider the local coherence between the
candidate sentence and the previously sorted ones.
Thus, RPD is able to generate a more coherent or-
der assignment for the input sentences. In addi-
tion, the pairwise ordering prediction loss is also

added as the auxiliary objective to guide the co-
herence modeling in the training procedure. The
overall architecture of our model is presented in
Figure 1.

Extensive experiments are conducted on six
public datasets in different domains to evaluate
the performances of BERSON. The results show
that BERSON significantly outperforms the exist-
ing approaches by a wide margin and achieves a
state-of-the-art performance on all the datasets and
under all the evaluation measurements.

2 Relational Sentence Ordering Network

In this section, we start by formulating the sen-
tence ordering problem and then present the pro-
posed model BERSON, which is composed of a
BERT-based Hierarchical Relational Sentence En-
coder, a Self-Attention based Paragraph Encoder,
and a Relational Pointer Decoder enhanced by a
new Deep Relational Module to model the text co-
herence in a more effective way.

2.1 Problem Definition

Given an out-of-order version set of N sentences
s = [s1, s2, · · · , sN ], and si = [wi1,wi2, · · · ,wili ],
where li is the number of words in sentence si.
The model aims to recover the correct order o =
[o1, o2, · · · , oN ] for these sentences.
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2.2 Hierarchical Relational Sentence
Encoder

The sentence encoder is designed based on BERT
with sentence pairs in the set as input, and further
adopts two-level attention layers to encode the hi-
erarchical semantic concepts and contextual infor-
mation of the sentence.

Formally, for the given N sentences in the set,
all the pair of sentences can be denoted as:

P =
{
Pi j |i ∈ [1, N], j ∈ [1, N], i , j

}
(1)

where Pi j represents the sentence pair
(
si, sj

)
. The

total number of sentence pairs is |P | = A2
N . These

sentence pairs are sent into BERT to not only learn
the sentence representation but also capture the
pairwise relationship between sentences.

As shown in the left part of Figure 1, given a
sentence pair Pi j =

(
si, sj

)
, the input sequence of

this pair to the BERT model consists of a [CLS]
token, the first sentence si in the pair, a separa-
tor token [SEP], and the second sentence sj . The
BERT model encodes the representation for this
pair as:{

Ci j, h
Pi j

i1 , · · · , hPi j

ili
, Si j, h

Pi j

j1 , · · · , h
Pi j

jlj

}
(2)

where Ci j and Si j are the final hidden states of the

[CLS] and [SEP] tokens, and
{
hPi j

i1 , · · · , hPi j

ili

}
and{

hPi j

j1 , · · · , h
Pi j

jlj

}
are the output word representa-

tions of sentence si and sj in this pair with the se-
quence length li and lj respectively.

After the BERT encoder, we compose a fixed-
dimensional representation for each sentence.

For sentence si in pair Pi j , the representations{
hPi j

i1 , · · · , hPi j

ili

}
of each word are combined to-

gether with an attention mechanism to obtain its
sentence representation hPi j

i :

uik = tanh
(
WwhPi j

ik

)
, αik =

exp(vwuik)∑li
k=1 exp(vwuik)

hPi j

i =
∑li

k=1
αikhPi j

ik
(3)

where Ww and vw are learnable parameters. At-
tention allows the model to concentrate on the in-
formative words for coherence and helps build a
better semantic representation. Similarly, we also
compute the representation hPi j

j for sj in pair Pi j .
Further, all the sentence pairs related to

sentence si can be described as: Pi ={
Pi j | j ∈ [1, N], j , i

}
∪ {Pki |k ∈ [1, N], k , i}.

The number of pairs is 2N − 2. The cor-
responding sentence representations of si ob-
tained from these pairs are given as: hi ={

hPi j

i | j ∈ [1, N], j , i
}
∪

{
hPki

i |k ∈ [1, N], k , i
}
.

We denote hi=
{
h1
i , · · · , h

2N−2
i

}
for simplification.

Since the sentence embeddings of si in different
pairs capture different context features, to reward
the most salient features that contribute highly to
the overall contextual meaning of the sentence, a
high-level attention mechanism is adopted to es-
tablish the final representation xi for sentence si:

uti = tanh
(
Wsht

i

)
, αt

i =
exp(vsuti )∑2N−2

t=1 exp(vsuti )

xi =
∑2N−2

t=1
αt
i ht

i (4)

where Ws and vs are also trainable weights. Es-
sentially, as all the related sentence pairs are fairly
considered, it is ensured that this representation
being invariant to the input sentence order and be-
ing logically reliable to be used in our model.

2.3 Paragraph Encoder
After the sentence encoder, a self-attention based
paragraph encoder is employed to capture the
global dependency for all the sentences.

Specifically, the sentence representations ob-
tained from the sentence encoder are packed to-
gether into a paragraph matrix X = [x1, · · · , xN ]
as X (1), which is then sent to L self-attention lay-
ers (Vaswani et al., 2017). For the l-th layer, the
output matrix X (l) is computed as:

X̃ (l) = LN(X (l−1) +MultiHead(X (l−1))) (5)

X (l) = LN(X̃ (l) + FFN(X̃ (l))) (6)

where MultiHead(·) is multi-head attention func-
tion, FFN(·) denotes the fully-connected feed-
forward network, and LN(·) is the layer normal-
ization operation (Ba et al., 2016).

The final paragraph vector m is generated by av-
eraging the output matrix X (L) from the last self-
attention layer: m = 1

N

∑N
n=1 X (L)n , where X (L)n is

the n-th row in X (L). This vector will then be used
as the initial state of our decoder.

2.4 Relational Pointer Decoder
In this section, we propose a Relational Pointer
Decoder (RPD), which utilizes the useful relative
ordering information to enhance pointer network
with a Deep Relational Module (DRM). In the fol-
lowing, we first describe the new module DRM
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and then incorporate it into the pointer network to
strengthen the coherence modeling in the decoder.

2.4.1 Deep Relational Module
Our Deep Relational Module is based on BERT
model, which aims to capture a better dependency
relationship between sentences. The architecture
of this module is shown in the middle part of Fig-
ure 1.

In particular, as illustrated in Section 2.2, given
the sentence pair Pi j , the embedding of the [CLS]
symbol from the top layer of BERT is denoted as
Ci j . Owing to the Next Sentence Prediction pre-
training objective of BERT, this vector Ci j is able
to aggregate the semantic relations for the input
sentence pair and is capable of identifying the rel-
ative order between two sentences. Therefore, we
take full advantages of this vector to exploit the
latent dependency for sentences.

Further, a probability distribution P(r |si, sj) is
generated, r ∈ {before, after}, which measures the
probability of si occuring before or after sj :

P(r |si, sj) = softmax(WcCi j) (7)

where Wc denotes the learnable weights.
In order to obtain the richer pairwise relation

information for the sentence pair, we combine the
above semantic feature Ci j and the probability dis-
tribution together:

Ri j =
[
Ci j ; P(r |si, sj)

]
(8)

This new vector Ri j is considered as the relational
representation for this sentence pair (si, sj), which
is then leveraged to provide the relative order in-
formation for the pointer network. We compute
such pairwise relational representation for all the
sentence pairs in the paragraph, and utilize the
subset of them at each step of the decoder.

Different from the previous method of using
the learned sentence vectors to calculate the pair-
wise relationship between sentences (Yin et al.,
2020), DRM employs the whole sequence of the
sentence pair as the input to BERT. It allows us
to directly relate words from different sentences
together, which is more straightforward to exploit
the intrinsic relations and coherence between sen-
tences. Further, instead of relying on the modules
trained from scratch to control the pairwise order-
ing predictions (Yin et al., 2020), DRM adopts
BERT as the main building block to obtain a pair-
wise relationship representation for the sentence

pair. Intuitively, being pre-trained on the large cor-
pus in BERT, this representation encodes more re-
liable and accurate relative ordering information,
and thus is more effective to help determine the
pairwise ordering predictions in the decoder.

2.4.2 Integrating DRM with Pointer Network
As illustrated in the right part of Figure 1, Rela-
tional Pointer Decoder (RPD) incorporates Deep
Relational Module into the pointer network to pro-
mote the coherence modeling among sentences.

Formally, the conditional coherence probability
of a predicted order ô for the given out-of-order
sentence set s can be computed as:

P(̂o|s) =
∏N

i=1
P(ôi |̂o<i, s) (9)

A higher probability indicates a more coherent
sentences assignment. We employ an LSTM-
based pointer network as the basis of our decoder,
and the mathematical formulation for the i-th step
in the decoder is:

hD
i = LSTM(hD

i−1, xôi−1) (10)

P(ôi |̂o<i, s) = softmax(gT tanh(WqhD
i +WkZi))

where g, Wq, and Wk are all learnable parame-
ters, hD

i is the hidden state in the decoder with
size d, hD

0 = m, and xôi−1 is the embedding of
the previous predicted sentence sôi−1 at step i − 1.
The softmax function produces an output distribu-
tion over all unordered sentences (candidate sen-
tences). The one that yields the highest probability
from the distribution will be selected at position i.

The matrix Zi encodes the relationship repre-
sentation information of the candidate sentence
with the other sentences in the set. For one candi-
date sentence, the other sentences can be divided
into two groups: previously sorted subset and un-
sorted subset. The relative ordering information
between the candidate sentence and the two group
sentences are captured by the proposed DRM with
its two versions: Ordered Module and Unordered
Module, respectively. On the one hand, such mod-
eling helps evaluate the local coherence between
the previously sorted sentences and the candidate
sentence for investigating the rationality of each
candidate choice. On the other hand, the global
relative orientation information of other unsorted
sentences with respect to the candidate one also
provides further clues for the current prediction.
Thus, both the local dependency information and
the global orientation are fully exploited in RPD.
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For the Ordered Module, the pairwise relation-
ships between the predicted sentence sôi−1 at step
i − 1 and the candidate sentence sc can be ef-
fectively measured by our deep relational module
with the following relational representation:

Rôi−1c =
[
Côi−1c; P(r |sôi−1, sc)

]
(11)

which not only encodes the semantic relations be-
tween two sentences, but also includes the prob-
ability of whether sentence sc truly appears af-
ter sôi−1 or not. In similar ways, the relational
embedding generated with the previous ordered
sentences can be described as

{
Rô1c, · · · , Rôi−1c

}
.

Then, we compose a high-level local coherence
representation el(sc) for this candidate sentence by
integrating these relational embeddings to summa-
rize the overall local dependency for sc.

For the Unordered Module, the relative orienta-
tion of another unordered sentence sg with respect
to the candidate sentence sc can also be captured
by our relational embedding as:

Rcg =
[
Ccg; P(r |sc, sg)

]
(12)

Considering all the other unsorted sentences, a hi-
erarchical global orientation representation eg(sc)
for sc can be obtained, which is formulated as:

eg(sc) =
1
|Sc |

∑
sg ∈Sc

Rcg (13)

where Sc is the unordered sentence set except sc.
Subsequently, to leverage the relative ordering

information encoded by Ordered and Unordered
Modules simultaneously, the representation el(sc)
and eg(sc) are integrated together, which allows us
to build a more informative relational vector er (sc)
for sentence sc. Finally, a new representation for
this candidate sentence sc is obtained by combin-
ing its sentence embedding and relational vector
er (sc) together:

z(sc) = [xc; er (sc)] (14)
Such representation is generated for all unsorted
sentences, which are then packed into matrix Zi

for order predictions. During inference, we use
beam search to select sentences sequentially.

2.5 Model Training

Assume that there are Q paragraphs in the training
set Q = {(s, o)}. Following the existing ordering
networks (Gong et al., 2016; Oh et al., 2019), the
model is trained to maximize the coherence prob-
ability by minimizing the loss function as follows:

Dataset Length statistics Data split Vocabulary
mean max train valid test

NIPS abstract 6 15 2427 408 377 11505
AAN abstract 5 20 8569 962 2626 34485
NSF abstract 8.9 40 96070 10185 21580 334090
arXiv abstract 5.38 35 884912 110614 110615 64557
SIND 5 5 40155 4990 5055 30861
ROCStory 5 5 78529 9816 9817 33903

Table 2: Summary of datasets used in our experiments.

Lc = −
1
|Q |

∑
(s,o)∈Q

logP(o|s; θ) +
λ

2
‖θ‖22 (15)

where θ denotes all the trainable parameters.
To further exploit the correct relative order in-

formation, we add the Pairwise Ordering Predic-
tion Loss (Ploss) as an auxiliary objective Lp. It
is defined as the cross-entropy loss function opti-
mized by minimizing the negative log-likelihood
of each pair’s ground-truth relative ordering label
yi j ∈ [0, 1], given the networks prediction ŷi j :

Lp = −
1
|Q |

1
|P |

∑
(s,o)∈Q

∑
Pi j ∈P

(−yi j logP(ŷi j |Pi j)

−(1 − yi j)P(1 − ŷi j |Pi j))

The final training objective of our model can be
formulated as:

L = LC + αLp (16)
where α is the coefficient that makes a balance be-
tween the influences of the two loss functions.

3 Experiments

In this section, we empirically evaluate the effec-
tiveness of BERSON in the sentence ordering task.

3.1 Datasets

The experiments are conducted on six public
datasets in different domains:
NIPS abstract, AAN abstract, NSF abstract,
arXiv abstract: These datasets contain ab-
stracts of research papers. NIPS abstract1 is
from conference papers in NIPS, where pa-
pers in years 2005-2013/2014/2015 for train-
ing/validation/testing (Logeswaran et al., 2018).
AAN abstract (Logeswaran et al., 2018) is col-
lected from ACL Anthology Network corpus.
ACL papers published up to year 2010 for train-
ing, year 2011 for validation and 2012-2013 for
testing. NSF abstract (Logeswaran et al., 2018) is
from NSF Research Award abstract dataset, where
abstracts in years 1990-1999/2000/2001-2003 for

1https://github.com/DeepLearnXMU/NSEG
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Dataset learning rate batch size epochs coefficient α
NIPS abstract 5e-5 8 20 0.2
AAN abstract 5e-5 32 10 0.4
NSF abstract 2e-5 16 10 0.4
arXiv abstract 2e-5 32 10 0.8
SIND 2e-5 8 10 1.0
ROCStory 2e-5 16 10 0.6

Table 3: Hyper-parameter settings of our model on
each dataset.

training/validation/testing. ArXiv abstract (Gong
et al., 2016; Chen et al., 2016) is from arXiv web-
site2. The validation and test sets of this dataset
are the first and last 10% abstracts from the shuf-
fled data, and the remaining data are for training.
SIND, ROCStory: SIND is a visual storytelling
dataset3 (Huang et al., 2016), which is re-
leased as training/validation/testing following the
8:1:1 split. ROCStory is a commonsense story
dataset4 (Wang and Wan, 2019; Mostafazadeh
et al., 2016). It is randomly split by 8:1:1 for the
training/validation/test sets. Both of two datasets
consist of 5 sentences in each story text.

Table 2 shows the details of all the datasets.

3.2 Evaluation Metrics
Following the existing work (Oh et al., 2019), we
employ the three most commonly used metrics5 in
this task to assess the model performance:
Accuracy (Acc): This metric calculates the ra-
tio of sentences whose absolute positions are cor-
rectly predicted (Logeswaran et al., 2018).
Perfect Match Ratio (PMR): It measures the per-
centage of the exactly matching orders across all
the paragraphs: PMR= 1

Q

∑Q
i=1 1(̂o

i = oi), where
ôi and oi are the predicted and correct order of the
i-th paragraph respectively (Chen et al., 2016).
Kendall’s tau (τ): For a paragraph containing N
sentences, τ is defined as: τ = 1−2× (# inversions
) /

(N
2
)
, where # inversions denotes the number of

pairs in the predicted sequence with the incorrect
relative order (Lapata, 2003). The score ranges
from -1 (the worst) to 1 (the best).

A higher score indicates a better performance
for all the metrics.

3.3 Experimental Setup
We adopt the BERTBASE in the experiment and
fine-tune it on each dataset. The paragraph en-

2https://github.com/FudanNLP/NeuralSentenceOrdering
3http://visionandlanguage.net/VIST/dataset.html
4https://github.com/sodawater/SentenceOrdering
5Code for metrics: https://github.com/DeepLearnXMU/NSEG

coder has 2 self-attention layers with 8 heads. The
hidden size is 768 and beam size is 16. Adam is
employed as the optimizer. To search for the op-
timal hyper-parameters, we adopt the grid search
strategy for learning rate from {2e-5, 5e-5}, batch
size from {8, 16, 32}, the number of epochs from
{5, 10, 20}, and the coefficient α in the loss func-
tion from {0.2, 0.4, 0.6, 0.8, 1.0}. The model with
the best performance on the validation set is se-
lected for each setting. The recommended hyper-
parameter configuration of the model on each
dataset are presented in Table 3. To diminish the
effects of randomness in training, the results of
our model are averaged with 5 random initializa-
tions. For data preprocessing, we use the tok-
enizer6 from BERT to preprocess the sentences.
The experiments are conducted on GeForce GTX
1080Ti GPU with PyTorch framework .

3.4 Baselines

To demonstrate that BERSON truly improves the
sentence ordering performance, we compare it
with the state-of-the-art methods in this task,
which can be categorized into two classes:
(1) Ranking or Sorting frameworks: Pairwise
Model (Chen et al., 2016); RankTxNet (Kumar
et al., 2020); B-TSort (Prabhumoye et al., 2020).
(2) Pointer network based models: HAN (Wang
and Wan, 2019); LSTM+PtrNet (Gong et al.,
2016); V-LSTM+PtrNet (Logeswaran et al.,
2018); ATTOrderNet (Cui et al., 2018); SE-Graph
(Yin et al., 2019); FUDecoder (Yin et al., 2020);
TGCM (Oh et al., 2019).

In addition to the above existing approaches, we
also investigate three variants of BERSON.
BertSenPD: This model replaces the ranking
module in RankTxNet with the traditional pointer
network decoder (PD). Please note that it uses the
single sentence rather than sentence pair as the in-
put to BERT to obtain the sentence vector.
BertPairPD, HRSEPD: These two models em-
ploy the sentence pair encoding strategy with
BERT and utilize PD instead of our RPD as the de-
coder. HRSEPD adopts the proposed Hierarchical
Relational Sentence Encoder (HRSE), while Bert-
PairPD does not have two-level attention layers in
the encoder. They aim to investigate the impact of
both the Hierarchical Relational Sentence Encoder
and the Relational Pointer Decoder.

6https://github.com/google-research/bert
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Models NIPS abstract AAN abstract NSF abstract arXiv abstract SIND ROCStory
Acc PMR τ Acc PMR τ Acc PMR τ Acc PMR τ Acc PMR τ Acc PMR τ

Pairwise Model - - - - - - - - - - 33.43 0.66 - - - - - -
LSTM+PtrNet 50.87 - 0.67 58.20 - 0.69 32.45 - 0.52 - 40.44 0.72 - 12.34 0.48 - - -
V-LSTM+PtrNet 51.55 - 0.72 58.06 - 0.73 28.33 - 0.51 - - - - - - - - -
ATTOrderNet 56.09 - 0.72 63.24 - 0.73 37.72 - 0.55 - 42.19 0.73 - 14.01 0.49 - - -
HAN - - - - - - - - - - 44.55 0.75 - 15.01 0.50 - 39.62 0.73
SE-Graph 57.27 - 0.75 64.64 - 0.78 - - - - 44.33 0.75 - 16.22 0.52 - - -
FUDecoder - - - - - - - - - - 46.58 0.77 - 17.37 0.53 - 46.00 0.77
TGCM 59.43 31.44 0.75 65.16 36.69 0.75 42.67 22.35 0.55 58.31 44.28 0.75 38.71 15.18 0.53 - - -
RankTxNet - 24.13 0.75 - 39.18 0.77 - 9.78 0.58 - 43.44 0.77 - 15.48 0.57 - 38.02 0.76
B-TSort 61.48 32.59 0.81 69.22 50.76 0.83 35.21 10.44 0.66 - - - 52.23 20.32 0.60 - - -

BertSenPD 64.36 31.30 0.79 70.34 45.45 0.80 45.76 17.41 0.64 69.72 46.26 0.78 52.12 19.19 0.58 75.05 52.56 0.81
BertPairPD 67.65 32.89 0.81 73.99 50.53 0.83 46.88 18.76 0.65 71.03 48.98 0.79 54.36 23.86 0.60 78.01 60.39 0.83
HRSEPD 67.99 35.54 0.83 75.45 53.27 0.84 47.01 19.02 0.65 71.65 49.91 0.80 56.22 25.22 0.63 79.81 61.93 0.84
BERSON 73.87 48.01 0.85 78.03 59.79 0.85 50.02 23.07 0.67 75.08 56.06 0.83 58.91 31.69 0.65 82.86 68.23 0.88

Table 4: Comparison results for different models on sentence ordering task. The best and second-best results are
in bold and underlined respectively.

3.5 Main Results

The experimental results7 are reported in Table 4.
As we see, BERSON achieves the state-of-the-art-
performance on all the datasets and under all the
evaluation metrics.

The results show that BERSON significantly
outperforms all the existing methods by a large
margin. BERSON shows remarkable improve-
ments over the existing best systems of 12.39%
and 16.77% accuracy score on NIPS and arXiv
datasets, and with 15.42%, 11.37%, and even
22.23% gains in PMR score on NIPS, SIND, and
ROCStory datasets respectively, which strongly
demonstrates the effectiveness of our model8.

Compared with the existing ranking ap-
proaches, our BertSenPD baseline performs much
better than RankTxNet with stable improvements,
which confirms the superiority of the traditional
pointer network to the ranking module used in
their model. This could be due to that RankTxNet
only computes a score for each sentence in paral-
lel, which overlooks the coherence of the whole
predicted sequence and may have trouble in gen-
erating a more coherent order assignment. Be-
sides, although B-TSort outperforms RankTxNet
with clear improvements, it only considers the
sentence-pair interactions and does not take the
entire paragraph into account. Therefore, B-TSort
is limited by the lack of a global structure and

7The validation results, average runtime, and the number
of parameters are reported in Appendix.

8Ordering prediction examples from BERSON and sev-
eral baselines are also shown in Appendix.

falls behind other baselines for Acc and PMR
scores on the large dataset NSF abstract. In con-
trast, BERSON not only captures the local coher-
ence between every two sentences but also obtains
the paragraph-level contextual information for the
global dependency, hence being more competitive
in the sentence ordering.

In addition, among the pointer network based
ordering models, FUDecoder exhibits a better per-
formance. However, the ordering prediction mod-
ules of FUDecoder are built based on two non-
linear layers trained from scratch and with the
learned sentence vectors as the input, which is
still difficult to fully explore the latent dependency
among sentences. Once these modules are not
sufficiently trained especially on small datasets,
they may mislead the decoder with the wrong
relative orientation information. Our BERSON
overcomes the limitation of FUDecoder by utiliz-
ing BERT model as the main building block of
our DRM to improve the pairwise ordering strat-
egy. As shown in Table 4, BERSON achieves to
outperform FUDecoder with significant improve-
ments of about 14.32% and 22.23% PMR score on
SIND and ROCStory respectively, which proves
the promise of incorporating more reliable order-
ing module into the decoder to ensure the more
accurate relative ordering information.

Moreover, for the variants of our model, Bert-
PairPD and HRSEPD perform better than Bert-
SenPD on all the datasets. This shows that with
the sentence pair instead of single sentence as the
input to BERT, the model directly builds the inter-
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Models arXiv abstract ROCStory
Acc PMR τ Acc PMR τ

BertPairPD 71.03 48.98 0.79 78.01 60.39 0.83
HRSEPD 71.65 49.91 0.80 79.81 61.93 0.84
BERSON 75.08 56.06 0.83 82.86 68.23 0.88
- Ordered Module 73.62 54.51 0.82 81.14 66.61 0.86
- Unordered Module 72.57 50.49 0.80 80.35 62.47 0.85
- Ploss 73.99 54.89 0.82 81.63 66.92 0.87

Table 5: Ablation studies on arXiv and ROCStory
datasets. We remove various modules and explore their
influences to our model.

Figure 2: Results of varying the coefficient α for Pair-
wise Ordering Prediction Loss in our model.

actions between words from different sentences,
which is capable of capturing the rich contextual
information for each sentence and is more bene-
ficial to modeling the relations among sentences.
Besides, HRSEPD outperforms BertPairPD with
stable improvements, which reflects the strength
of our Hierarchical Relational Sentence Encoder.
Furthermore, by adopting our Relational Pointer
Decoder to replace the traditional pointer network,
BERSON achieves further improvements across
the datasets, which demonstrates the advantage of
enhancing the pointer network with DRM to reach
a superior performance.

3.6 Ablation Study

Further, to better understand the contributions of
different components in our Relational Pointer De-
coder, we conduct ablation study on arXiv and
ROCStory datasets, which are both the largest
datasets in the two domains for providing more re-
liable analysis. The results are reported in Table 5.

Effect of Ordered and Unordered Modules: It is
observed that the removal of two modules hurts the
model performance dramatically though they still
outperform our baseline models BertPairPD and
HRSEPD. Compared with Ordered Module, the
lack of Unordered Module leads noticeable drops,
which indicates that the relative orientations be-
tween unsorted sentences are more important for

Models arXiv abstract SIND
head tail head tail

Pairwise Model 84.85 62.37 - -
LSTM+PtrNet 90.47 66.49 74.66 53.30
ATTOrderNet 91.00 68.08 76.00 54.42
SE-Graph 92.28 70.45 78.12 56.68
FUDecoder 92.76 71.49 78.08 57.32
TGCM 92.46 69.45 78.98 56.24
RankTxNet 92.97 69.13 80.32 59.68
BertSenPD 93.38 72.57 81.46 61.02
BertPairPD 94.01 73.99 82.37 62.24
BERSON 94.75 76.69 84.95 64.87

Table 6: Accuracy of predicting the first and the last
sentences on arXiv and SIND datasets.

order predictions. The superior performance of
BERSON over these two variants shows the neces-
sity of having both modules in RPD to leverage the
global orientation and local dependency informa-
tion simultaneously for a better coherence model.

Effect of Pairwise Ordering Prediction Loss:
As shown in Table 5, removing the Pairwise Or-
dering Prediction Loss (Ploss) in the training pro-
cedure causes a performance degradation on both
datasets. This proves the benefit of encouraging
the accurate relative ordering information through
the loss function. As the coefficient α in Equation
16 directly controls the impact of Ploss, we fur-
ther study how the value of this coefficient affects
the performance of BERSON. Figure 3 shows the
results of accuracy score on arXiv and ROCStory
datasets. It is shown that α = 0.8, 0.6 is superior
to other settings for arXiv and ROCStory respec-
tively. Thus, it is essential to have an appropriate
value to balance the importance of Ploss and the
original training objective for BERSON.

3.7 Analysis

In this section, we delve into further analysis to in-
vestigate the stability and adaptability of the pro-
posed model.

3.7.1 Prediction of First and Last Sentences

Previous studies (Oh et al., 2019; Yin et al., 2019)
have mentioned that both the first and last sen-
tences play crucial roles in a paragraph due to their
special positions. Thus, we also report the per-
formances of our models in correctly predicting
these two sentences on arXiv and SIND datasets.
As summarized in Table 6, both of the two vari-
ants BertSenPD and BertPairPD outperform the
existing state-of-the-arts. BERSON achieves fur-
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Models Win=1 Win=2 Win=3 Win=1 Win=2 Win=3

NIPS abstract SIND

B-TSort 87.59 95.59 98.11 82.67 95.01 99.09
BERSON 91.98 96.84 99.29 84.01 95.11 99.10

NSF abstract AAN abstract

B-TSort 61.41 75.52 83.87 90.56 96.78 98.71
BERSON 70.08 80.29 86.46 93.31 97.57 99.09

Table 7: Analysis of the displacement of sentences on
four datasets. Win denotes the Window size.

Models Acc PMR τ LCS Rouge-S
NIPS abstract

B-TSort 39.43 0.00 0.74 71.68 83.26
BertPairPD 43.75 6.67 0.75 72.59 87.44
BERSON 50.89 13.33 0.76 74.96 87.94

AAN abstract
B-TSort 36.86 0.00 0.69 72.01 78.52
BertPairPD 40.75 3.45 0.71 73.87 85.77
BERSON 47.38 6.90 0.73 76.53 86.48

Table 8: Performance for paragraphs containing more
than 10 sentences in NIPS and AAN datasets.

ther boosts and reaches the best performances on
both datasets. For identifying the last sentence,
BERSON obtains significant improvements over
RankTxNet of 7.56% and 5.19% gain on arXiv
and SIND datasets respectively, which also indi-
cates the benefits of the proposed model.

3.7.2 Sentence Displacement Analysis
Additionally, we analyze the displacement of sen-
tences in the predicted orders by calculating the
percentage of sentences whose predicted location
is within one, two or three positions from their
original location (Prabhumoye et al., 2020). The
higher score is better, which denotes less displace-
ment of sentences. As summarized in Table 7,
BERSON also achieves a better performance than
B-TSort across the datasets and on all the window
sizes especially for the smaller ones. BERSON
even reaches 99% percent when the window size
is 3 on NIPS, AAN, and SIND datasets, which
clearly demonstrates the promise of BERSON.

3.7.3 Performance on Longer Paragraphs
Following the prior approach (Prabhumoye et al.,
2020), we also evaluate the model performance
on paragraphs longer than 10 sentences, which are
much challenging for the order prediction. In ad-
dition to the three metrics adopted in the previous
sections, here we also utilize two other metrics:

Longest Common Subsequence (LCS) and Rouge-
S for a more comprehensive comparison9. Table
8 reports the results on NIPS and AAN datasets.
BERSON significantly outperforms B-TSort with
all the metrics, showing more than 10% gain in
accuracy score on both datasets. Besides, the re-
sults of PMR score indicate that it is difficult for B-
TSort to exactly match orders for all the sentences,
while our BERSON consistently shows a good po-
tential on these longer paragraphs, which proves
the stronger ability of BERSON in modeling the
long-range dependency across the sentences.

4 Conclusion

In this work, we develop a new BERT-
enhanced Relational Sentence Ordering Network
(BERSON) by integrating BERT with the pointer
network for a better coherence modeling. In par-
ticular, a novel Relational Pointer Decoder is de-
veloped to incorporate the relative ordering infor-
mation into the pointer network with a Deep Rela-
tional Module, which leverages BERT to fully ex-
ploit the pairwise relationships between sentences
helping generate an ordered sequence. The exper-
iments on six datasets demonstrate the superiority
of BERSON to the baselines, which achieves the
state-of-the-art performance across the datasets.
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A Appendix

A.1 Case Study
Table 9 reports the sentence ordering results for
two examples produced by different models. For
the baseline FUDecoder and B-TSort, we ran the
public code provided by the authors to generate
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the order predictions. As we see, in the first ex-
ample, BERSON achieves to exact match orders
for all the sentences while all the baseline meth-
ods have some incorrect order predictions. For the
second input paragraph, BERSON is able to cor-
rectly predict the order for the most of sentences
which also shows a better performance than the
competing models.

A.2 Two other metrics used in the Analysis

Longest Common Subsequence (LCS): It cal-
culates the percentage of longest correct sub-
sequence between the predicted order and the gold
order (Gong et al., 2016). The consecutiveness is
not necessary for it10.
Rouge-S: This metric (Chen et al., 2016; Gong
et al., 2016) measures the fraction of pairs of sen-
tences whose predicted relative order is the same
as the ground truth order11. It allows for any arbi-
trary gaps between two sentences as long as their
relative order is correctly identified.

A higher score is better for both metrics.

A.3 Discussion of Topic Shift Problem

BERSON captures both global and local coher-
ence among sentences, which is effective in re-
organizing texts with multiple topics. In par-
ticular, the paragraph encoder is able to model
the global topic information for all the sentences,
which helps guide the order prediction process
for the decoder. In addition, building upon the
Next Sentence Prediction pre-training objective
of BERT, the Deep Relational Module captures
the local dependency relationship between each
pair of sentences and identifies the tight seman-
tic connections for sentence ordering, especially
identifying the sentences containing topic shift
clues of the whole text and acting as a link be-
tween the preceding and the following topics.
Further, the Relational Pointer Decoder leverages
both the topical context flows from the previously
predicted sequences and from the unsorted sen-
tences to generate an accurate order prediction for
these topic-linking sentences and their neighbor-
ing ones. Therefore, BERSON is capable of gen-
erating a logically consistent output sequence for
texts including texts with topic shift.

10Codes for metric: https://github.com/shrimai/Topological-
Sort-for-Sentence-Ordering

11Code for metric: https://github.com/DeepLearnXMU/NSEG

Example 1
(4) The reception began with the bride and groom dancing.
(2) The bride and groom wrote their own wedding vows.
(5) Then, family pictures were taken with the bride and groom.
(1) We gathered at the church to celebrate the marriage.
(3) They make a handsome couple.
Ground Truth (1) (2) (3) (4) (5)
FUDecoder (1) (2) (5) (4) (3)
B-TSort (2) (4) (3) (1) (5)
BertPairPD (1) (3) (2) (4) (5)
BERSON (1) (2) (3) (4) (5)

Example 2
(4) The first one extracts relevant noun phrases as a heading.
(6) Finally, the last one uses nominalization to propose titles.
(3) Our application relies on three different titling methods.
(1) This paper deals with an application of automatic titling.
(5) And the second one selects words appearing in the text.
(2) It aims to attribute a title for a given text.
(7) Experiments show that our methods provide relevant titles.
Ground Truth (1) (2) (3) (4) (5) (6) (7)
FUDecoder (2) (1) (3) (4) (6) (5) (7)
B-TSort (1) (2) (4) (5) (6) (3) (7)
BertPairPD (1) (2) (3) (4) (6) (7) (5)
BERSON (1) (2) (3) (4) (5) (7) (6)

Table 9: Ordering prediction examples generated by
different approaches. The prediction in blue indicates
the wrong order assignment.

Dataset BERSON BertPairPD
Runtime # Params Runtime # Params

NIPS abstract 58s 129M 47s 127M
AAN abstract 1min26s 129M 1min15s 127M
NSF abstract 57min59s 129M 48min40s 127M
arXiv abstract 2h44min23s 129M 2h31min10s 127M
SIND 3min33s 129M 2min58s 127M
ROCStory 6min31s 129M 5min28s 127M

Table 10: The runtime on the validation set and the
total number of parameters for BERSON and baseline
model BertPairPD.

A.4 Further Experimental Results
For the more detailed experimental results, Table
10 summarizes the runtime on the validation set
and the number of parameters for BERSON and
BertPairPD. The validation results of BERSON on
all the datasets are reported in Table 11.

Dataset Validation Results
Acc PMR τ

NIPS abstract 68.65 39.46 0.82
AAN abstract 76.75 58.84 0.85
NSF abstract 51.71 23.39 0.68
arXiv abstract 74.84 55.75 0.82
SIND 58.84 31.70 0.65
ROCStory 82.55 67.63 0.87

Table 11: The validation performance of BERSON.


