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Abstract

Existing language models excel at writing
from scratch, but many real-world scenarios re-
quire rewriting an existing document to fit a set
of constraints. Although sentence-level rewrit-
ing has been fairly well-studied, little work has
addressed the challenge of rewriting an entire
document coherently. In this work, we intro-
duce the task of document-level targeted con-
tent transfer and address it in the recipe do-
main, with a recipe as the document and a di-
etary restriction (such as vegan or dairy-free)
as the targeted constraint. We propose a novel
model for this task based on the generative pre-
trained language model (GPT-2) and train on a
large number of roughly-aligned recipe pairs.1

Both automatic and human evaluations show
that our model out-performs existing methods
by generating coherent and diverse rewrites
that obey the constraint while remaining close
to the original document. Finally, we ana-
lyze our model’s rewrites to assess progress to-
ward the goal of making language generation
more attuned to constraints that are substantive
rather than stylistic.

1 Introduction

We often think that writing starts from a blank page,
but in practice, writing often involves adapting an
existing document to fit a new context. This might
involve rewriting documentation written for a Mac
so that it will apply to a PC, rewriting a lesson plan
for a different grade level, or rewriting a product
description to appeal to customers in multiple re-
gions. Automating such rewriting is valuable but
challenging, since it requires learning to make coor-
dinated changes spanning an entire document while
adhering to constraints that apply not to the style
but to the substance of the document.

∗*Work done when the author was at Microsoft Research.
1https://github.com/microsoft/

document-level-targeted-content-transfer

Figure 1: Document-level targeted content transfer in
the recipe domain: given a hot cocoa recipe and the
user constraint vegan, the task is to rewrite the recipe
into a vegan hot cocoa recipe.

We introduce the novel task of document-level
targeted content transfer, defined as rewriting a
document to obey a user-provided constraint result-
ing in some systematic alteration of the document’s
content. Success at this task involves both transfer
and controlled generation at the document level.
Prior work on controlled generation guides the out-
put of a model using attribute classifiers (Dathathri
et al., 2020) or control codes (Keskar et al., 2019),
but we find that these models do not perform well
on our transfer task (§4.1.2). In contrast, models
built for the transfer task are generally trained at the
sentence level (Hu et al., 2017b,a; Li et al., 2018;
Rao and Tetreault, 2018; Syed et al., 2019).

Document-level transfer has typically found suc-
cess by rewriting each sentence independently
(Maruf et al., 2019). However, many real-world
rewriting scenarios require interdependent changes
across multiple sentences. A clear example is cook-
ing, where rewriting a hot cocoa recipe to make it
vegan requires more than just substituting “coconut
milk” for “milk” in a single step—it may also re-
quire changing the cooking times and techniques,
adjusting ingredient amounts, or replacing other
ingredients like toppings or spices (Figure 1). Such

https://github.com/microsoft/document-level-targeted-content-transfer
https://github.com/microsoft/document-level-targeted-content-transfer
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Mix together cocoa, sugar, and salt in a 
small saucepan. <inst>

Contextual Rewriter

When mixture begins to boil (when mixture 
begins to thicken, it will soon begin to boil), 
stir for one minute longer. <inst>

Hot Cocoa   <endoftitle>
4 Tbsp cocoa powder<ing>
½ cup sugar <ing>
½ tsp salt<ing>
2 cups milk <ing>
½ cup heavy cream <ing>
½ tsp pure vanilla extract  <ing>
<endofings>
In a medium pot over medium heat, mix 
together cocoa powder, sugar, salt and 
milk. <inst>
Heat until everything is dissolved and 
well combined, stirring occasionally 
(about 5-6 minutes) <inst>
Stir in heavy cream and vanilla extract. 
<inst>
<endofinst>

<target:vegan>

<|startoftext|>
<src:non-vegan>

OUTPUT

INPUT

Bring to a boil and then simmer for about 
15 minutes OR until you can't stand the 
amazing aroma! <inst>

Source recipe context

Target recipe context
(previously generated)

In a medium saucepan, whisk together the 
cocoa powder, sugar, salt, and 2 
tablespoons of soy milk until smooth.<inst>

Contextual Rewriter + 
Ingredient Prompt

Add the soya creamer and vanilla extract 
and keep whisking. Now add half a cup of 
the soy milk and whisk until smooth. <inst> 

Hot Cocoa   <endoftitle>
4 Tbsp cocoa powder<ing>
½ cup sugar <ing>
½ tsp salt<ing>
2 cups milk <ing>
½ cup heavy cream <ing>
½ tsp pure vanilla extract  <ing>
<endofings>
In a medium pot over medium heat, mix 
together cocoa powder, sugar, salt and 
milk. <inst>
Heat until everything is dissolved and 
well combined, stirring occasionally 
(about 5-6 minutes) <inst>
Stir in heavy cream and vanilla extract. 
<inst>
<endofinst>

<target:vegan>

<|startoftext|>
<src:non-vegan>

OUTPUT

INPUT

Reduce the heat to medium low. <inst>

Source recipe context

Target recipe context
(previously generated)

soy creamer <ing>
vanilla extract
<endofprompt>

Step-level 
Ingredient Prompt

Figure 2: Rewrites of the source nth step obtained by the two variants of our proposed model (at test time): (left)
Contextual Rewriter, which uses the source context until the nth step and the target context until the (n− 1)th step
to generate the target nth step; and (right) Contextual Rewriter + Ingredient Prompt, which uses the same context
as the previous variant with the addition of a step-level ingredient prompt.

a rewriting task is substantive rather than stylis-
tic because it changes the content of the recipe,
while a stylistic transfer on recipes might instead
focus on rewriting a recipe for a different audience,
reading level, or writing style such that the content
remains the same and only the expression of the
recipe changes.

In this work, we address the task of document-
level targeted content transfer in the recipe domain,
where the document is a recipe and the target con-
straint is a dietary restriction such as vegan. Given
a recipe (source) and a dietary constraint, the task
is to rewrite it into a new recipe (target) that obeys
the constraint. Training a fully-supervised model
for this task requires a large number of (recipe,
rewritten recipe) pairs, which are difficult to ob-
tain at scale. We therefore leverage an alignment
algorithm (Lin et al., 2020) to construct our noisy
training data pairs where the source is a recipe that
violates a dietary constraint and the target is another
recipe for the same dish that obeys the constraint
but may not be similar to the source (§2).

We propose a novel model for this task which
learns to rewrite a source document one step at
a time using document-level context. We start
with the recently successful generative pre-trained
(GPT-2) language model (Radford et al., 2019) and
fine-tune it on text that combines {document-level
context, source step, constraint, target step} using

appropriate separators. We investigate two variants
of our model in the recipe domain:

Contextual Rewriter (§3.1) where the context
includes the source recipe (including title, list of
ingredients, and steps), any previously rewritten
steps, and the targeted constraint (Figure 2 left);

Contextual Rewriter + Ingredient Prompt
(§3.2) where, in addition to the context discussed
above, we predict a set of step-level ingredients to
prompt our rewriter model (Figure 2 right).

We compare our proposed models to sentence-
level transfer baselines that rewrite each recipe step
independently, and to document-level controllable
baselines that ignore the source recipe and only
control for the dietary constraint (§4.1). We use au-
tomatic metrics and human judgments to evaluate
the rewritten recipes, measuring their overall qual-
ity, their fluency, their dietary constraint accuracy,
and their ability to produce diverse outputs with-
out straying too far from the source recipe (§4.2).
Comprehensive experiments demonstrate that our
proposed model outperforms baselines by simulta-
neously accomplishing both transfer and control,
but still lacks the substantive knowledge humans
rely on to perform well at this task (§4.5). Finally,
we conduct an in-depth analysis of various model
rewrites and the strengths and weaknesses of the
models (§5).
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2 Dataset Creation

The recipe domain, constrained by dietary restric-
tions, is particularly well-suited to our task since
recipes are commonly rewritten according to di-
etary constraints in real-world scenarios2, and this
process often requires multiple related changes
across the recipe. To construct our dataset, we
use three steps: collect recipes spanning a range
of dietary constraints (§2.1), tag recipes with di-
etary constraints using a rule-based method (§2.2),
and align recipes into pairs with similar content but
opposite dietary tags (§2.3).

Although our model relies on large amounts of
parallel data, we obtain this parallel data automati-
cally by running an unsupervised alignment algo-
rithm (Lin et al., 2020) on non-parallel data. Large
collections of non-parallel data are readily available
on the web for many other domains, such as lesson
plans for different grade levels or technical docu-
mentation for different operating systems. With
the methods outlined in this section, non-parallel
data can be aligned and transformed into a parallel
dataset for transfer tasks in other domains.

2.1 Collect Recipes

We collect English recipes from online recipe web-
sites.3 We remove recipes that lack a title or a list
of ingredients, or that have less than two steps. The
resulting dataset contains 1,254,931 recipes, with a
median of 9 ingredients and 9 steps.

2.2 Tag Recipes with Dietary Constraints

We consider seven dietary constraints: dairy-free,
nut-free, egg-free, vegan, vegetarian, alcohol-free,
and fish-free.4 For each dietary constraint, we
obtain a list of ingredients that violate it using
food lists from Wikipedia.5 We then compare each
recipe’s ingredients against that list, and tag it valid

2In a survey of 250 randomly selected user comments from
recipe websites, we found that one third discussed modifying
the recipe, often to accommodate dietary restrictions. In ad-
dition, U.S. public school cafeterias are required by law to
accommodate food allergies and other dietary needs (USDA,
2017). Such rewriting that is currently done manually could
benefit from our proposed automated approach.

3Websites include Food.com, AllRecipes.com, FoodNet-
work.com, and 8 other websites, as well as four existing recipe
datasets. Appendix contains full list and associated statistics.

4Each of these constraints is commonly mentioned in
recipe titles, and is one of the most common diets (USDA,
2020) or dietary restrictions (FDA, 2020).

5E.g. for the dairy-free constraint, we used https://
en.wikipedia.org/wiki/Dairy_product.

Dietary Recipe Pairs Step Pairs
Constraint Train Dev Test Train
Diary-Free 194,309 10,607 9,190 2,552,492
Nut-Free 161,596 8,722 8,989 2,060,228
Egg-Free 124,207 5,786 5,662 1,794,047
Vegan 110,718 5,708 4,859 1,765,865
Vegetarian 59,847 2,765 2,629 682,845
Alcohol-Free 52,157 2,348 2,136 570,627
Fish-Free 34,786 1,546 1,278 383,162

Table 1: Number of recipe pairs and step pairs for each
dietary restriction in our data.

if there are no violating ingredients, or invalid if a
violating ingredient is in the recipe.

2.3 Create Recipe and Step Pairs

Our goal is to find recipe pairs for the same dish
where one obeys a dietary constraint and the other
violates it. Lin et al. (2020) propose a method
for automatically aligning two recipes of the same
dish. We use their method to first group recipes
into dishes, and then find aligned pairs of recipes
within a dish where one is valid and the other is
invalid. Table 1 shows the number of recipe pairs
in our dataset for each dietary constraint. It should
be noted that these pairs are noisy for our rewrite
task since the pairs were not created by rewriting.

The alignment algorithm also gives an alignment
score at the step level. We threshold on this score to
keep only the highest-quality step pairs. Further, in
cases where a single source step is aligned to more
than one target step with a high score, we com-
bine the target steps together into one, enabling our
rewrite model to learn to rewrite one step into multi-
ple steps whenever appropriate. Table 1 (rightmost
column) shows the total number of high quality
step-level pairs for each dietary constraint that we
use to train our rewrite model.

3 Model Description

We propose two model variants for document-
level targeted content transfer in the recipe domain.
Given a recipe and a dietary constraint, the goal
is to rewrite the recipe one step at a time to fit the
dietary constraint.

3.1 Contextual Rewriter

We start with a pre-trained GPT-2 model which is
trained on text from 45 million websites with a lan-
guage modeling objective to predict the next word
given previous words.6 We fine-tune this model

6This and any future discussion of a pre-trained GPT-2
model refers to the GPT-2 medium model available at https:

https://en.wikipedia.org/wiki/Dairy_product
https://en.wikipedia.org/wiki/Dairy_product
https://github.com/huggingface/transformers
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using the same language modeling objective on
the train split of step-level recipe pairs (Table 1).
The left column of Table 2 shows how we format
our pairwise data for fine-tuning. Given an aligned
pair of a source step (n) and a target step (n′), we
prepend the source step n with the source recipe’s
title, ingredients, and steps from 1 to (n− 1); we
also prepend the target step n′ with target steps
from 1 to (n′ − 1). We use separators to demar-
cate each piece of contextual information. Further,
to allow the GPT-2 model to understand the di-
etary constraint, we prepend the entire source-level
context with a special tag <src:non-constraint>
(e.g. non-vegan) and prepend the entire target-level
context with a special tag <tgt:constraint> (e.g.
vegan).

Note that during fine-tuning we use only those
steps of a recipe that have been aligned into a pair
with a high alignment score (§2.3). However, at test
time, we rewrite all steps in the source recipe using
the fine-tuned model. Also, during fine-tuning, we
use the teacher forcing strategy: while rewriting
source step n, the target recipe context corresponds
to the true target steps 1 to (n′−1), whereas during
test time, the target recipe context corresponds the
previously generated steps 1 to (n− 1).7

3.2 Contextual Rewriter + Ingredient
Prompt

We observe that the rewriter described above of-
ten uses ingredients and techniques that diverge
from the source recipe. For example, on the left
side of Figure 2, the rewritten output diverges from
the source recipe when it ignores the ingredients
of “heavy cream and vanilla extract” in the source
step rather than suggesting an appropriate vegan
alternative. We hypothesize that if the model had
the capacity to accept step-level ingredients (in
the form of a prompt) as an additional input while
rewriting each step, then it could learn to follow
the source recipe more closely. This strategy has
proven effective in other domains, including auto-
matic storytelling, where prompting a model with a
rough “storyline” helps models stay on-topic (Yao
et al., 2018).

We therefore propose a variant of the previous
model that uses step-level ingredients as a prompt
in addition to document-level context. We again
start with a pre-trained GPT-2 model and fine-tune

//github.com/huggingface/transformers.
7For decoding, we use top-k sampling (k = 40). Ap-

pendix contains implementation details for all models.

< |startoftext| > < |startoftext| >
<src:non-constraint> <src:non-constraint>
src title <endoftitle> src title <endoftitle>
src ingredient 1 <ing> src ingredient 1 <ing>
... ...
src ingredient K src ingredient K
<endofings> <endofings>
src step 1 <inst> src step 1 <inst>
... ...
src step n src step n
<endofinst> <endofinst>
<tgt:constraint> <tgt:constraint>
tgt step 1 <inst> tgt step 1 <inst>
... ...
tgt step n′ tgt step (n′ − 1)
<endofinst> <endofinst>
< |endoftext| > tgt step n′ ingredient 1 <ing>

...
tgt step n′ ingredient K′n
<endofprompt>
tgt step n′

< |endoftext| >

Table 2: Data format for fine-tuning a GPT-2 model
to rewrite source recipe step n into target recipe step
n′ (where n′ is aligned to n) using our Contextual
Rewriter (left) and our Contextual Rewriter + Ingredi-
ent Prompt (right).

it on the train split of step-level recipe pairs (Ta-
ble 1) using a different data format (see the right
column of Table 2). As in the previous model, we
use the source recipe data until step n and the target
recipe steps until (n′−1). But before including the
target step n′, we prompt with the ingredients in n′

separated by an <ing> separator, and end with an
<endofprompt> special token. This enables our
model to learn to use the ingredient prompt while
generating the rewrite.

We investigate two methods for generating the
step-level ingredient prompt. During fine-tuning,
we use the rule-based method. At test time, we
generate results using both methods.

Rule-based ingredient prompt: Given a source
recipe step, we first identify all ingredients men-
tioned in the step.8 We then use a rule-based
method to substitute any ingredients that violate the
dietary constraint with alternatives from a food sub-
stitution guide (Steen and Newman, 2010). While
there is work on automatically substituting recipe
ingredients with similar ones (Teng et al., 2012;
Boscarino et al., 2014; Yamanishi et al., 2015), to
our knowledge no work makes recipe substitutions
in accordance with dietary constraints.

8For each ingredient in the recipe’s ingredient list, we
find the longest n-gram match between ingredient and step,
ignoring common recipe stopwords such as “tablespoons” and
descriptors like “chopped.”

https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
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GPT-2 ingredient prompt: We use a GPT-2
model to predict the step-level ingredients to use
as prompts. We first collect a dataset of recipe
steps from ∼1.2 million recipes (from §2.1). We
extract the ingredients from each recipe step using
the rule-based method above. We then construct
texts by combining {recipe title, full list of ingre-
dients, steps 1 to n− 1, ingredients in step n} and
fine-tune another GPT-2 model on this text.9

4 Experimental Results

We aim to answer the following research questions:
1. Do generation-based rewriters outperform

simpler non-learning baselines (§4.1.1)?
2. Do our proposed rewriters do a better job of

staying close to the source recipe while obey-
ing the constraint compared to controllable
generation models (§4.1.2) that obey the con-
straint but ignore the source recipe?

3. Do our proposed document-level rewriters out-
perform sentence-level rewriters (§4.1.3)?

4. Does using ingredients as a prompt help our
proposed rewriter stay close to the source
recipe while obeying the dietary constraint?

5. Finally, how do models compare to human
performance on the rewrite task (§4.5)?

4.1 Baselines and Model Ablations

4.1.1 Non-learning Baselines
Rule-Based: We use the rule-based method dis-
cussed in §3.2 to rewrite each step independently.
This baseline only substitutes ingredients and does
not change the cooking times or techniques that
may be required for the substitutions to fit.

Retrieval: We imitate a simple approach to the
recipe rewrite task: searching the web for a version
of the dish that obeys the given dietary constraint.
Given a source recipe, we determine the dish to
which this recipe belongs and retrieve a recipe for
the same dish that fits the dietary constraint from
the combined pool of train, dev, and test recipes.

4.1.2 Document-level Controllable Baselines
We build the following baseline models by provid-
ing the title and ingredient list of the target recipe
(which obeys the dietary constraint) as the prompt
to generate the first target recipe step. For gener-
ating each of the subsequent nth steps, we append
the previously generated steps 1 to (n− 1) to the

9Data format used for fine-tuning is included in appendix.

prompt. We stop when the model has generated as
many steps as there are in the source recipe.

PPLM: Plug-and-Play Language Model
(Dathathri et al., 2020) combines a pre-trained
language model with a classifier to guide the
generation toward a user-specified attribute. We
build a PPLM model for our task using a GPT-2
model fine-tuned on ∼1.2 million recipes (§2.1) as
the pre-trained language model and using separate
bag-of-words classifiers for each of our dietary
constraints.10

CTRL: The conditional transformer language
model (Keskar et al., 2019) uses a ‘control’ code to
govern the style and content of the generated text.
For our task, we use the “Links” control code to
specify the recipe domain.11

4.1.3 Sentence-level Transfer Baselines
We build additional baseline models for rewriting
each step independent of context and train them on
our recipe step pairs (Table 1).

Seq2Seq Copy: We use a sequence-to-sequence
model that is enriched with a copy mechanism
(Jhamtani et al., 2017). We train separate models
for each of our dietary constraints.

Transformer We train a transformer (Vaswani
et al., 2017) model with byte-pair encoding.12

4.1.4 Model Ablations
No-Source Rewriter: We fine-tune a pre-trained
GPT-2 model on ∼1.2 million recipes (from §2.1)
with a simple language modeling objective. This
ablation does not make use of the source recipe, but
rather uses only the title and the ingredient list of
the aligned target recipe as the prompt, generating
the target recipe sequentially.

End-to-End Rewriter: This model variant is
trained end-to-end to rewrite the entire source
recipe at once rather than one step at a time. As a
prompt, it takes a dietary constraint, a source recipe
(title, ingredients and steps), and the title and ingre-
dients of the target recipe. We start with a GPT-2
pre-trained model and fine-tune it on the train split
of our recipe pair data (Table 1) for our task.

10See appendix for PPLM implementation details.
11See appendix for CTRL implementation details.
12We use the implementation at https://github.

com/gooppe/transformer-summarization.

https://github.com/gooppe/transformer-summarization
https://github.com/gooppe/transformer-summarization


6490

Fluency Dietary Constraint Closeness to Source Diversity
Model Perplexity ↓ % Adherence ↑ ROUGE ↑ Trigram ↑
Non-learning Baselines

Rule-Based 10.24 96.1 98.76 0.550
Retrieval 9.01 93.4 28.40 0.344

Document-level Controllable Baselines
PPLM 9.28 94.9 20.48 0.577
CTRL 13.47 94.3 24.69 0.418

Sentence-level Transfer Baselines
Seq2seq Copy 15.60 99.0 25.98 0.145
Transformer 9.88 93.5 30.67 0.360

Model Ablations
No-Source Rewriter N/A 96.4 20.35 0.548
End-to-End Rewriter 9.51 97.0 25.60 0.488
No-Context Rewriter 10.79 99.9 31.81 0.615
Contextual Rewriter 11.61 99.6 31.16 0.634

+ GPT-2 Ingredient Prompt 13.86 99.6 28.93 0.590
+ Rule Ingredient Prompt 12.54 99.5 34.06 0.674

Table 3: Automatic metric results on model rewrites of 1000 randomly sampled recipes from the test set. The
difference between bold and non-bold numbers is statistically significant with p < 0.001. We do not compare to
Rule-Based under closeness to source since it copies steps from the source, leading to an artificially high score.

No-Context Rewriter: This variant does not
make use of the document-level context, but rather
learns to rewrite using only (source step, target
step) pairs.

Contextual Rewriter: This variant makes use
of document-level context, but does not use a step-
level ingredient prompt.

Contextual Rewriter + GPT-2 Prompt: At test
time, in addition to document-level context, this
variant uses the GPT-2 step-level ingredient predic-
tion model (§3.2) to generate an ingredient prompt.

Contextual Rewriter + Rule Prompt: This
variant uses the rule-based method (§3.2) to gener-
ate an ingredient prompt.

4.2 Evaluation Metrics

4.2.1 Automatic Metrics
We evaluate model rewrites on 1000 recipes each
from the test and dev sets on these criteria:

Fluency: We measure the perplexity of the
model-generated recipes using a GPT-2 language
model fine-tuned on recipe data for fair compari-
son.13

Dietary constraint accuracy: We report the per-
centage of ingredients in the rewritten recipes that
obey the dietary constraint.14

13We do not report perplexity for the No-Source Rewriter
since we use that model to calculate perplexity.

14To identify all ingredients in a recipe, we match against a
list of foods from https://foodb.ca/.

Closeness to source:15 We report ROUGE-L
(Lin and Hovy, 2002) recall score between the
source recipe and the rewritten recipe.

Diversity: Since generation models can produce
results that are bland and repetitive, we measure
the diversity of the generated recipes in terms of
the proportion of unique trigrams (Li et al., 2015).

4.2.2 Human Judgments

We conduct human-based evaluation using a crowd-
sourcing platform16 on rewrites from the best-
performing models based on automatic metrics. We
randomly sample 150 recipes from our test set with
equal proportions of each dietary constraint.

Individual: We ask 5 judges to rate each rewrit-
ten recipe on a scale of 1 to 5 on these criteria:

a. Ingredient usage: “Does this recipe use ap-
propriate ingredients for the type of dish it is mak-
ing?”

b. Closeness to source: “How close is this
recipe to the source while fitting the dietary con-
straint?” While some difference from the source
is necessary for the rewriting task, this metric eval-
uates whether the recipe has strayed so far from
the source that it may no longer be considered a
rewriting of the source recipe.

15Note that we do not measure closeness to target since we
do not have gold target rewritten recipes.

16We use https://www.mturk.com/. Details on se-
lection, questions, design, and payment in appendix.

https://foodb.ca/
https://www.mturk.com/
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c. Dietary constraint: “Does this recipe fit the
specified dietary constraint?”

d. Overall quality: “Is this a good recipe for
someone who follows this dietary constraint?” We
expect this metric to indirectly reflect qualities for
which there are no well-accepted automatic metrics,
such as coherence and the appropriateness of the
ingredient prompts.

Comparative: We also collect human judgments
on head-to-head comparisons between models by
displaying two rewrites of the same source recipe
side by side: one from our best-performing model
(Contextual Rewriter + Rule Prompt) and the other
from one of the Rule-Based, Retrieval, End-to-End
Rewriter, or Contextual Rewriter models. We ask
them to choose which of the two rewrites is better
overall. Each pairwise comparison is rated by five
judges.

4.3 Automatic Metric Results

While each model has its strengths, our proposed
models provide the best balance of both transfer
and control. Table 3 shows the results on model
rewrites of 1000 randomly sampled recipes from
the test set.17 The retrieval baseline produces
the most fluent rewrites, which is expected given
that its outputs consist of human-written recipes.
However, its scores for closeness to source and
adherence to the dietary constraint are consider-
ably lower. Document-level controllable baselines
produce more diverse outputs than sentence-level
transfer baselines, but sentence-level transfer base-
lines stay closer to the source recipe. In particular,
Seq2seq Copy achieves a high dietary constraint
accuracy, but we noticed that this model generates
bland and repetitive outputs (as reflected in its diver-
sity score). Each of these models has a shortcoming
in a key component of the rewrite task.

Under our model ablations, we find that the No-
Source Rewriter earns the lowest score for close-
ness to source, which is predictable given that
it does not see the source recipe. By introduc-
ing source context, the End-to-End Rewriter does
slightly better, producing fluent rewrites but still
lacking diversity and dietary constraint accuracy.
By rewriting each step independent of context, the
No-Context Rewriter achieves a very high dietary
constraint accuracy, but does not stay as close to the

17Results on 1000 recipes from the dev set are reported in
the appendix. They follow the same pattern as the test set.

Ingredient Dietary Close to Overall
Model Usage Const. Source Quality
Rule-Based 4.64 4.70 4.58 4.47
Retrieval 4.48 4.40 3.29 3.91
End-to-End 4.64 4.72 3.73 4.52
Contextual 4.71 4.74 3.84 4.60
+ Rule Prompt 4.67 4.75 4.06 4.57

Table 4: Human judgments on a scale of 1 to 5 on
model rewrites of 150 recipes from test set.

source as variants that use context. The model that
introduces a GPT-2 predicted ingredient prompt
obeys the dietary constraint well, but is not able to
maintain diversity while staying close to the source,
suggesting that there is room for improvement in
how we build our ingredient prediction model. Fi-
nally, the rewriter that uses context and a rule-based
ingredient prompt performs best across dietary con-
straint accuracy, closeness to source, and diversity
while remaining reasonably fluent.

4.4 Human Judgment Results

Table 4 shows the results of human judgments on
150 recipe rewrites from the test set.18 We find that
all models except the retrieval baseline achieve sim-
ilarly high scores. The Contextual Rewriter + Rule
Prompt, the best-performing variant of our model
according to automatic metrics, performs well in
closeness to source and diversity, reaffirming our
previous findings.19 Interestingly, the Contextual
Rewriter without an ingredient prompt performs
better at ingredient usage and receives the highest
overall score. Upon further investigation, we find
that the rule-based method we used to generate the
ingredient prompt sometimes suggests awkward
ingredient substitutions such as “goat soymilk”,
which leads to a lower ingredient usage score.

Figure 3 shows the results of model compar-
isons.20 We find that humans prefer our best model
considerably over the retrieval baseline, but the
Rule-Based method and the End-to-End Rewriter
come close to our best model. The Contextual
Rewriter performs similarly to our best model.

4.5 Comparison to Human Rewrite

We ask three experienced cooks who are current
or former vegetarians to rewrite 30 randomly sam-
pled non-vegetarian recipes from our test set into
vegetarian recipes. We find that the human rewrites

18Inter-annotator agreement (Krippendorff’s alpha) is 0.12.
19As with automatic metrics, we do not compare to Rule-

Based in closeness to source since it copies from the source.
20Inter-annotator agreement (Krippendorff’s alpha) is 0.14.
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Figure 3: Results of a pairwise comparison between
rewrites of our best model and other models on 150
recipes from the test set as judged by human evaluators.

significantly exceed our best model’s performance
in all four automatic metrics: fluency (perplex-
ity: 13.91 vs. 20.8), adherence to the dietary con-
straint (99.7% vs. 96.3%), closeness to the source
(ROUGE: 77.08 vs. 35.44), and diversity (0.908 vs.
0.836). These findings suggest that there is room
for further improvement on this task.

5 Analysis

Simple substitution is not adequate for the task
of document-level targeted content transfer. In a
recipe that contains a single violating ingredient

“meat”, the rule-based method makes the minimal
edit of substituting “imitation meat”, but ignores
the other parts of the recipe that must change as a
result. Although on automatic metrics our model
does only marginally better, qualitatively we found
many cases where the rule-based method fails: it
always suggests the same substitutions independent
of the type of recipe leading to awkward food com-
binations, it misses a long tail of uncommon ingre-
dients, and it does not make contextual changes to
ingredient amounts, cooking times, or techniques.
These flaws lead to the rule-based method per-
forming worse than our model according to human
judges (Table 4 and Figure 3).

As Figure 4 shows, the Contextual Rewriter +
Rule Prompt is capable of more extensive changes
based on document-level context. Human evalua-
tors preferred our model’s output, which changes
multiple ingredients, adds additional techniques,
and increases the cooking time. In general, while
many of the baseline models tend to produce
generic outputs such as “Preheat the oven”, our
model produces much more diverse recipes and
ingredient substitutions.

The larger the number of invalid ingredients for
a dietary constraint, the more difficult it was for

our model to follow that constraint. Vegan, the
most restrictive constraint we studied, had the low-
est dietary adherence accuracy across all models
(93.6%). The alcohol-free constraint, which is dom-
inated by one common ingredient (wine), had the
highest accuracy (99.5%) despite the models seeing
fewer training examples for that constraint.21

The Contextual Rewriter + Rule Prompt falls
short in its understanding of the physical entities
involved in cooking. Some of the steps it gener-
ates are not physically possible, such as “Dip the
cheese into the bread”. The model can also suggest
unrealistic or illogical cooking times (e.g. “Bake
for 10-10 minutes”), or change oven temperature
mid-recipe. While these results are uncommon,
they highlight that the model has not learned the
physical rules governing the use of ingredients and
cooking techniques.

6 Related Work

Text attribute transfer: Most work in text at-
tribute transfer has been at the sentence level, in-
cluding sentiment (Hu et al., 2017b), formality
(Rao and Tetreault, 2018), tense (Hu et al., 2017a),
and authorship (Syed et al., 2019). While the text
attribute transfer approach works well at the sen-
tence level, our work tests a model’s ability to make
changes across multiple sentences that result in a
coherent document. Further, our method allows
for more drastic alterations to the source text than
edit-based methods (Li et al., 2018) since we do
not restrict the words that the model can alter.

Document-level controlled generation: The
difficulty of text attribute transfer is amplified when
the task expands to the document level. While con-
trolled generation models such as Grover (Zellers
et al., 2019), PPLM (Dathathri et al., 2020), and
CTRL (Keskar et al., 2019) have been successful
at the document level, they do not make use of con-
text beyond an initial prompt. For many NLP tasks,
contextual information from surrounding sentences
can improve the quality of a generated sentence.
We have seen this for coreference resolution (Joshi
et al., 2019), relation extraction (Tang et al., 2020),
and machine translation (Werlen et al., 2018; Macé
and Servan, 2019). In this work, we show the effec-
tiveness of including document-level context when
rewriting recipes to fit a dietary constraint.

21Appendix shows a breakdown of each model’s accuracy
by dietary restriction.
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Top with cheese.

Pour into ramekin.

Add salt, pepper, meat and veggies to the egg and stir.
Mix in salt, pepper, and 1 tablespoon of tomato paste. Add 
onion, garlic, peas, and mushrooms; cook and stir, mashing 
occasionally with fork until tender (8-10 minutes).

Spray ramekin or muffin cup with oil, coating the cup well.

Crack egg into a bowl and break it up with a fork or small 
whisk.

Fill 6 muffin moulds half full with the mix.

Source recipe Contextual Rewriter + Rule Prompt

Separate 2 of the eggs. Use a fork to crack the two eggs in.

Grease muffin pan with oil or butter and pour batter into pan.

Top each muffin with 2 pieces of cheese (1/8 of an ounce),
pressing lightly on top.

Vegetarian Egg MuffinsEgg Muffins
Add salt, pepper, imitation meat and veggies to the egg and stir.

Dice red pepper and cauliflower.

Stir to combine.

add the remaining ingredients and cook until the vegetables are 
tender .

Rule-Based

PPLM

CTRL

Seq2seq

Add the egg, salt, pepper, and garlic powder.Transformer

Combine the ground flax and the ½ cup water in a bowl and mix well.No-Context

In a medium bowl add milk and eggs; stir in Bisquick mix until 
smooth.

Contextual

Add in cream cheese and milk and mix together until well combined.
+ GPT-2 Ing. 

Prompt
Bake at 350 for 15-20 minutes or 450 12-15 minutes. Bake at 350 for about 25 minutes, or until browned.

Step Rewrites from Other Models

Preheat oven to 350 degrees.No-Source

Figure 4: A recipe rewritten by the Contextual Rewriter + Rule Prompt, with outputs for a single step from other
models for comparison. Our model replaces the violating ingredient (in red) with a substitution (in green), as well
as modifying or adding new ingredients and techniques in every step (underlined).

Recipe generation: Recipe generation has been
a research focus for decades, using methods rang-
ing from rule-based planning systems (Hammond,
1986) to more recent neural network models that
use targeted information such as entity types
(Parvez et al., 2018), cooking actions (Bosselut
et al., 2017), ingredients (Kiddon et al., 2016), or
order information (Bosselut et al., 2018) to guide
the generations. Building on the insight that knowl-
edge about ingredients improves recipe generation,
our work uses ingredient prompts to guide the gen-
eration of each recipe step. While there has been
extensive work on recipe generation, few studies
focus on controlled recipe generation. Majumder
et al. (2019) recently introduced the task of per-
sonalized recipe generation, producing customized
recipes based on user preferences. To our knowl-
edge, our work is the first to generate recipes that
conform to a given dietary constraint.

7 Conclusion

We introduce the novel task of document-level tar-
geted content transfer and address it in the recipe
domain, where our documents are recipes and our
targeted constraints are dietary restrictions. We
propose a novel model for rewriting a source recipe
one step at time by making use of document-level
context. Further, we find that conditioning the
model with step-level constraints allows the rewrit-
ten recipes to stay closer to the source recipe while
successfully obeying the dietary restriction. We
show that our proposed rewriter is able to outper-
form several existing techniques, as judged both by
automatic metrics and human evaluators.

Although we focus on the recipe domain, our
method naturally generalizes to other domains
where procedural tasks can be substantively rewrit-

ten. For example, one could rewrite technical doc-
umentation by constraining on the target operating
system, rewrite lesson plans by constraining on the
target grade level, or rewrite furniture assembly
instructions by constraining on the tools used.

More broadly, this approach makes it possible
to customize existing content to better fit a user’s
physical reality, whether that entails accommodat-
ing their dietary needs, updating their schedule
based on the weather forecast, or providing infor-
mation on a dashboard based on what’s in their field
of view. As language generation becomes more
grounded in signals outside of language, work in
the area of substantive transfer becomes increas-
ingly relevant.
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A Dataset Creation

We collect recipes from recipe websites and exist-
ing recipe datasets listed in Table 5.

While some websites use tags to indicate that a
recipe obeys a dietary constraint, not all do, and
the tags are often noisy or missing. We therefore
choose not to rely on recipe websites for these
tags, and instead we use a rule-based method to tag
recipes in our dataset as either valid or invalid in
relation to a dietary constraint. While the method
improves our model’s performance, we observe
several shortcomings. Despite constructing a large
set of rules, we still miss words that are uncommon
or that did not appear in the train set. Also, since
we search for invalid ingredients using the recipe’s
list of ingredients, we miss ingredients that have

Recipe Website Number of Recipes
AllRecipes.com 58,535
BBCGoodFood.com 9,171
Chowhound.com 3,890
CommonCrawl 424,621
Epicurious.com (Epicurious) 20,110
Food52.com 20,595
Food.com 268,914
FoodNetwork.com 47,187
Instructables.com 11,190
MasterCook (Loginetics) 72,141
MealMaster (Loginetics) 312,344
ShowMeTheYummy.com 555
SimplyRecipes.com 2,372
SmittenKitchen.com 986
WikiHow.com 2,320

Table 5: Online recipe data sources and amounts.

been omitted from the ingredient list, as well as
ingredients that are not mentioned explicitly by
name (e.g. “fillet” as in “catfish fillet” will not
be flagged as an invalid ingredient for a fish-free
recipe) or ingredients that are referred to by a brand
name or slang term that is not part of our rule set.

While we tried to catch as many of these cases
as possible, there are many ambiguous words that
the method will incorrectly classify such as “beef-
steak tomato” appearing to contain meat (“steak”),

“oyster crackers” appearing to contain fish (“oys-
ter”), or a variety of “egg replacer” brand-name
products appearing to contain egg.

The method is also unable to recognize negation
(e.g. “This recipe is not vegan!”), or distinguish
when a food is marked as optional or as an alter-
native (e.g. “Flax is a good substitute for eggs”).
Both of these situations would cause a recipe to be
marked with the wrong tag.

After assigning tags, we align similar recipes to
form pairs of recipes for the same dish. Table 6
shows an example alignment between two recipes
for Hot Cocoa with the alignment scores for each
step. Recipes were divided into 80% train, 10%
dev, and 10% test sets before aligning them into
pairs, resulting in slightly uneven sizes for each set.

B GPT-2 Model Details

For each GPT-2 model, we use the 355 million
parameter pre-trained GPT-2 medium model. We
fine-tune using batch sizes ranging from 2-16 dis-
tributed across 64 NVIDIA Tesla V100 GPUs. We
use a block size of 1024 for the end-to-end rewriter,
and smaller block sizes for models that generate
one step at a time of 128 for models without con-
text and 256 for models with context. We train

https://doi.org/10.1145/2380718.2380757
https://doi.org/10.1145/2380718.2380757
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ID Source Recipe Steps ID Target Recipe Steps Score
0 In a medium pot over medium heat, mix together

cocoa powder, sugar, salt and milk.
0 Heat milk to your desired temperature. 10.0

1 While milk is being heated, mix hot cocoa mix,
creamer, and cinnamon sugar in bowl.

99.7

1 Heat until everything is dissolved and well com-
bined, stirring occasionally (about 5-6 minutes).

2 Add small squirt or about 1/4 teaspoon of choco-
late syrup to dry mix.

1.0

2 Stir in heavy cream and vanilla extract. 3 Add same amount of syrup again, or enough so
that dry mix becomes lumps.

37.0

3 Mix together until everything is heated but not
boiling (about 3-4 minutes).

4 Add confectioner’s sugar and cocoa powder to mix
(doesn’t have to be as lumpy anymore).

1.1

4 Pour into your favorite mugs and top with desired
toppings.

5 Pour mix into mug and pour milk on top. 99.9

6 Add whipped cream and extra chocolate syrup. 87.4

Table 6: Step-level alignment scores between two Hot Cocoa recipes from the dataset.

each model for 2 epochs on datasets of aligned
recipe steps ranging from 1.4 million to 10 mil-
lion instances. The No-Context Rewriter was the
fastest model to train, at 26 hours per epoch, and
the slowest were the End-to-End Rewriter and the
Contextual Rewriter + Rule Prompt at 318 hours
per epoch.

We experimented with several hyperparame-
ters for generation, including top-k sampling, nu-
cleus sampling, and temperature (Table 7) using
manually-chosen values. Since most variants per-
formed well in adherence to the dietary constraint,
we chose the best-performing variant in perplexity
and diversity for our experiments.

We observe that our models can generate diverse
rewrites from the same prompt, each with a differ-
ent degree of fluency and adherence to the dietary
constraint. We therefore create a set of rules to
select the best generation out of 10 using a set of
criteria including use of invalid ingredients, non-
dictionary words, and incorrect punctuation. The
criteria for selecting from multiple generations in-
clude:
• The step does not contain any violating ingre-

dients
• The length is less than 100 characters
• The step does not contain special characters

including ‘%’, ‘*’, or ‘$’.
• The first character is capitalized
• The last character is punctuation
• All words appear in an English dictionary

(Merejkowsky, 2020)

C Data Format for Document-Level
Controllable Baselines

PPLM We use the official codebase for PPLM:
https://github.com/uber-research/PPLM. To
build our PPLM model on our datasets, we use a

pre-trained GPT-2 model on ∼1.2 million recipes
as the pre-trained language model. We build sepa-
rate bag-of-words classifiers for each of our seven
dietary constraints. We construct the bag-of-words
for each dietary constraint by selecting words that
appear at least 5 times in recipes fitting the con-
straint and do not appear in recipes that violate the
constraint. At test time, we format the data with
the same separators for title, ingredients, and steps
used to fine-tune the GPT-2 model on recipe data.

CTRL For our task, we use the “Links” control
code to specify the recipe domain. We include the
desired dietary restriction in the prompt in addition
to the target recipe context and separate them by
newlines as they would appear in a web link. We
also append the appropriate step number (e.g. “1.”)
to the prompt before generating each step.

D Data Format for Model Ablations

We format our recipe data differently for each
model ablation described in the main paper. Ta-
ble 8 shows the data format we use to fine-tune the
GPT-2 model that predicts the ingredients in the
next step. Table 9 shows the data format we use to
fine-tune the End-to-End Rewriter. Table 10 shows
the data format we use to fine-tune the No-Context
Rewriter. Finally, Table 11 shows the data format
we use to fine-tune the Contextual Rewriter.

E Example Outputs

Figure 5 shows a source recipe alongside the
recipe generated by the Contextual Rewriter + Rule
Prompt, as well the generated fourth recipe step
from each other model for comparison.

We provide additional step-level examples for
each model in Table 12, and examples of an entire
recipe rewrite for each model in Table 13. We also

https://github.com/uber-research/PPLM
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Perplexity % Adherence Trigram Diversity
Contextual Rewriter + Rule Prompt

top k = 40, nucleus = 1, temperature = 1 12.54 99.5 0.709
top k = 40, nucleus = 0.8, temperature = 1 12.57 95.1 0.472
top k = 40, nucleus = 0.9, temperature = 1 12.82 94.8 0.498
top k = 40, nucleus = 1, temperature = 0.9 14.13 94.0 0.526
top k = 0, nucleus = 1, temperature = 1 17.02 99.3 0.551
top k = 10, nucleus = 1, temperature = 1 13.98 99.3 0.492
top k = 20, nucleus = 1, temperature = 1 14.85 99.6 0.511

Table 7: Results on the dev set for various generation hyperparameters, including top-k sampling, nucleus sam-
pling, and temperature.

Bake uncovered for 15 to 25 minutes.

Remove from oven, sprinkle with 
bacon and potato chips.

Bake covered for 45 minutes. Cover and bake at 350 until bubbly, 45 minutes.

In a six quart casserole dish, mix 
together the hashbrowns, onion, 
chicken soup, mushroom soup, chives, 
butter, sour cream and cheese.

Preheat oven to 350 degrees F (175 
degrees C).

Sprinkle tops with cheese.

Source recipe Contextual Rewriter + Rule Prompt

Preheat oven to 350 degrees.

Combine the hashbrowns, onion, tofu, soy milk
and mushroom soup in a large bowl and mix 
well.

Bake for 20 minutes, and broil for 5 minutes to 
brown the top.

Vegetarian Potato CasserolePotato Casserole Remove from oven, sprinkle with imitation bacon and potato chips.

baking dish; bake, uncovered, for 30 minutes.

Drain well and set aside.

remove from the oven to a little of the potato mixture .

Rule-Based

PPLM

CTRL

Seq2seq

Sprinkle with crushed potato chips.Transformer

In a large bowl, fold into egg mixture to create stiff potato-eggs, fold 
in buttered bread crumbs.

No-Context

Spread in casserole dish and sprinkle cheese on top.Contextual

Stir until melted and the mixture is smooth.
+ GPT-2 Ing. 

Prompt

Step Rewrites from Other Models

Fold in hash browns.No-Source

Figure 5: A recipe rewritten by the Contextual Rewriter + Rule Prompt, with outputs for a single step from other
models for comparison. Our model replaces the violating ingredient (in red) with a substitution (in green), as well
as modifying or adding new ingredients and techniques in every step (underlined).
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< |startoftext| >
title <endoftitle>
ingredient 1 <ing>
...
ingredient K <ing>
<endofings>
step 1 <inst>
...
step (n− 1)
<endofinst>
step n ingredient 1 <ing>
...
step n ingredient Kn

< |endoftext| >

Table 8: Data format used to fine-tune a GPT-2 model
to predict the ingredients in the next step. If there
were no ingredients in the next step, we used the token
<noings>.

< |startoftext| >
<src:non-constraint>
src title <endoftitle>
src ingredient 1 <ing>
...
src ingredient K <ing>
<endofings>
src step 1 <inst>
...
src step N
<endofinst>
<tgt:constraint>
tgt title <endoftitle>
tgt ingredient 1 <ing>
...
tgt ingredient K <ing>
<endofings>
tgt step 1 <inst>
...
tgt step N
<endofinst>
< |endoftext| >

Table 9: Data format used to fine-tune the End-to-End
Rewriter.

< |startoftext| >
<src:non-constraint>
src title <endoftitle>
src step N
<endofinst>
<tgt:constraint>
tgt step N
< |endoftext| >

Table 10: Data format used to fine-tune the No-Context
Rewriter.

< |startoftext| >
<src:non-constraint>
src title <endoftitle>
src ingredient 1 <ing>
...
src ingredient K <ing>
<endofings>
src step 1 <inst>
...
src step (n− 1)
<endofinst>
<tgt:constraint>
tgt step N
< |endoftext| >

Table 11: Data format used to fine-tune the Contextual
Rewriter.

show several examples of the ingredient prompts
and resulting generations for our two prompt-based
models, Contextual Rewriter + GPT-2 Prompt and
Contextual Rewriter + Rule Prompt (Table 14).

F Additional Results

We provide the automatic metric results for 1000
recipes randomly sampled from the dev set in Ta-
ble 15. We also provide a detailed breakdown of
each model’s accuracy across the seven dietary con-
straints in Table 16. Finally, we show a comparison
of the results for human-written recipe rewrites
against our best model, the Contextual Rewriter +
Rule Prompt, on a subset of 30 vegetarian recipes
from the test set (Table 17).

G Human Evaluation

For human evaluation, we limited our annotators
to workers who met the following criteria:
• HIT Approval Rate (%) for all Requesters’

HITs greater than 90
• Location is one of AU, CA, NZ, GB, US
• Number of HITs Approved greater than 500
• Masters has been granted (user was identified

by the platform as a high-performing annota-
tor)

We obtained 5 evaluations per recipe for each of
the questions listed in Figure 6 (paying $0.30 per
response), Figure 7 ($0.25), and Figure 8 ($0.50).
For the head-to-head model comparison, if fewer
than 3 of the 5 evaluations agreed, we considered
it a tie between the models. We did not have our
human annotators evaluate the fish-free dietary con-
straint since the most common violating ingredient,
Worcestershire sauce, is not commonly known to
contain fish, which caused our annotators confu-
sion in an initial test run.



6499

Model Ultimate Green Beans (Vegetarian)
Original Recipe Step Cook the bacon in a large, deep skillet over medium-high heat until crisp, about

10 minutes.
Rule-Based Cook the imitation bacon in a large, deep skillet over medium-high heat until

crisp, about 10 minutes.
PPLM Saute mushrooms in butter until lightly browned.
CTRL Place the mushrooms, butter, and sugar in a large pot.
Seq2seq Copy heat oil in a large pot over medium heat .
Transformer In a large skillet, heat the oil.
No-Source Rewriter Saute mushrooms in butter until soft; set aside.
No-Context Rewriter WEST FRONT STREET, ST. LOUIS.
Contextual Rewriter Saute the diced onion in the olive oil over medium heat until golden around the

edges.
Contextual Rewriter + GPT-2 Prompt Chop a bunch of mushrooms, and slice a small onion.
Contextual Rewriter + Rule Prompt In large skillet, over medium heat, saute mushrooms in butter 5 minutes.
Human Rewrite Peel and sautee garlic and olive oil in large, deep skillet over high heat until

slightly scorched skin, about 3 minutes.
Vegetable Stock (Dairy-Free)

Original Recipe Step Melt butter in 8-quart pan over medium heat.
Rule-Based Melt nondairy butter in 8-quart pan over medium heat.
PPLM Strain through a fine sieve.
CTRL Add the carrots, celery stalks, green onions, garlic cloves and 1 cup of water.
Seq2seq Copy heat oil in a large saucepan over medium heat .
Transformer In a large saucepan, combine the stock, water, and seasonings.
No-Source Rewriter Clean and half the vegetables
No-Context Rewriter Heat the olive oil in a large pot over medium heat.
Contextual Rewriter Heat the oil in a large 4-quart stockpot over medium heat.
Contextual Rewriter + GPT-2 Prompt Step 4 Then add the trimmings from the carcass and 1 onion and a turnip, and

the carrots and celery, and cook until the vegetables are soft, around 4 to 5 hours
on a medium heat.

Contextual Rewriter + Rule Prompt Feel free to play with this amounts; for a cheesy flavour, you can add vegan
cheese or sprinkle nutritional yeast on top.
Low Cholesterol Muffins (Egg-Free)

Original Recipe Step In another bowl, beat the egg white and mix together with a fork rapidly for 30
seconds.

Rule-Based In another bowl, beat the egg white substitute and mix together with a fork
rapidly for 30 seconds.

PPLM Bake in a preheated oven at 375F for 15
CTRL Bake for 20-25 minutes till golden brown.
Seq2seq Copy in a large bowl , combine the flour , sugar , baking powder , and salt .
Transformer Bake at 350 degrees for 30 minutes.
No-Source Rewriter Bring to boil water/juice.
No-Context Rewriter Mix together dry ingredients.
Contextual Rewriter In a small bowl, beat egg replacer with water until fluffy.
Contextual Rewriter + GPT-2 Prompt Combine 1T globs of the mix onto greased cookie sheets.
Contextual Rewriter + Rule Prompt Then add egg or egg replacer.

N’Awlins Stuffed Bell Peppers (Fish-Free)
Original Recipe Step Add shrimp, and cook for 2 minutes.
Rule-Based Add tofu, and cook for 2 minutes.
PPLM Makes 8 to 10 servings.
CTRL To serve, place on serving platter and top each portion with another layer of

vegetables.
Seq2seq Copy add the shrimp and cook for 5 minutes .
Transformer Add the rice and cook, stirring occasionally, until the rice is tender
No-Source Rewriter Heat the oven to 350F.
No-Context Rewriter Simmer covered until the peppers are tender.
Contextual Rewriter Add in the minced garlic and red pepper flakes.
Contextual Rewriter + GPT-2 Prompt Add rice and simmer just until the liquid has been absorbed.
Contextual Rewriter + Rule Prompt Add the tofu and cook for 8 minutes.

Table 12: Example step outputs for different dietary constraints. Ingredients that violate the dietary constraint and
their substitutions are colored.
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Model Caramel Popcorn (Dairy-Free)
Original Recipe Melt butter, corn syrup, and brown sugar together.

Add sweetened condensed milk slowly.
Cook to soft ball stage.
Pour over popcorn and mix.

Rule-Based Melt nondairy butter, corn syrup, and brown sugar together.
Add sweetened condensed soymilk slowly.
Cook to soft ball stage.
Pour over popcorn and mix.

Retrieval In a large saucepan combine brown sugar, corn syrup, and baking soda.
Stir to combine and bring to a soft boil.
Add vinegar and boil again.
Remove from heat and add vanilla.
Place popcorn in a large baking pan.
Pour sauce over popcorn and coat evenly.
Cover with plastic wrap to keep fresh.
Fill brown bags with a scoop of caramel popcorn for take home treats!

PPLM Combine sugar, margarine, syrup and salt in a heavy pan.
Stir over low heat until mixture is melted and boiling.
Boil for 5 minutes, stirring occasionally.
Remove from heat.

CTRL Preheat oven to 350 degrees F.
In a large bowl, combine the cornstarch, coconut oil, and salt.
Add the peanuts, sugar, salt, vanilla, and baking soda.
Stir until well combined.

Seq2seq Copy in a large bowl , combine the sugar , brown sugar , and vanilla .
add the egg and vanilla extract .
cook on low for about 5 minutes .
pour into a large bowl and set aside .

Transformer In a large saucepan, combine brown sugar, corn syrup, and margarine
In a large saucepan, combine the brown sugar, corn syrup, and
Place popcorn in a large, buttered baking pan.
Pour over popcorn and toss to coat.

End-to-End
Rewriter

Pop popcorn.
Remove any un-popped kernels.
Put popcorn in a large bowl.
Put the nuts on top.
In a saucepan, melt margarine, brown sugar, corn syrup and salt.
Bring to a boil, stirring constantly.
Boil without stirring for 5 minutes.
Remove from heat and add vanilla and soda.
Pour syrup over popcorn and mix well.
Bake in a preheated 200 degree oven for 1 hour, stirring every 15 minutes.

No-Context
Rewriter

Combine margarine, Kahlua, brown sugar, corn syrup and salt in a large, nonstick saucepan.
Heat margarine, brown sugar and corn syrup.
Boil for 5 minutes over medium heat without stirring. Stir; bake 5 minutes more. Stir; bake 5 minutes
longer.
Pour caramel over popcorn and stir well. Spread evenly onto cookie sheet 4 Bake 45 to 55 minutes
or until golden brown. Cool completely, about 15 minutes.

Contextual
Rewriter

In a saucepan, mix brown sugar, margarine, corn syrup & salt.
Add 2 cups maple syrup, salt, and ground cinnamon to a large saucepan.
Cook until the mixture reaches soft ball stage (236 degrees F).
Pour the caramel over the popcorn and stir until all of the popcorn is coated.

Contextual Rewriter
+ GPT-2 Prompt

In a large pot, place your popped corn and cover it in the popped corn.
Bring to a boil, stirring, then reduce the heat and simmer, stirring once or twice, for 20 minutes or
until thick.
Continue cooking for 5 minutes while gently stirring once in awhile to stop the edge of the pot from
burning.
Slowly pour in the corn syrup, and continue mixing until you can form a ball of dough. Roll out
dough balls on a board lightly dusted with cornstarch to 1/4 to 1/2-inch thick.

Contextual Rewriter
+ Rule Prompt

Add nondairy butter, corn syrup and brown sugar to a medium saucepan over medium high heat.
Combine the soymilk and dry ingredients in a medium bowl, then whisk in the wet.
Cook over low heat, stirring constantly, about 10 minutes or until thickened; stir twice during
cooking.
Dump in the popcorn. Stir the mixture to coat it all with corn and pop it in the oven.

Table 13: Examples of document-level recipe rewrite outputs for Caramel Popcorn when the dietary constraint is
dairy-free. Ingredients that violate the dietary constraint and their substitutions are colored.
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Figure 6: An example of a question used for human evaluation of the recipe rewrite task on Amazon Mechanical
Turk.
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Source Recipe Step Model Ingredient
Prompt

Generated Recipe Step

a slice is delicious to eat on its
own or with coconut butter,
cashew butter, almond butter, or
grass fed butter spread on top!

Contextual Rewriter +
GPT-2 Prompt

banana,
brown sugar,
cinnamon,
nutmeg,
clove

In a large bowl, stir together banana,
brown sugar, egg, butter and nutmeg.

Contextual Rewriter +
Rule Prompt

coconut,
sunflower seed
butter

Coat with your favorite healthy mix of
seeds butter a few drops of liquid stevia
or sweetener of choice sprinkled on top
(optional).

Serve with milk or with a lump
of butter melting into the nice
warm pudding.

Contextual Rewriter +
GPT-2 Prompt

spray oil,
vanilla,
chocolate bread
pudding

Spray with cooking spray and add the
chocolate bread pudding.

Contextual Rewriter +
Rule Prompt

soymilk,
nondairy butter,
pudding

Top pudding with dollops of vegan but-
ter and a sprinkle of cinnamon.

Stir in beer. Contextual Rewriter +
GPT-2 Prompt

coconut,
paprika

Heat up about 2 to 3 inches of coconut
oil in a cast iron skillet.

Contextual Rewriter +
Rule Prompt

non-alcoholic
beer

Slowly pour in 3/4 cup non-alcoholic
beer, whisking briskly to blend.

Table 14: Examples to show the effect of the predicted and rule-based ingredient prompts on the generated steps.

 

Figure 7: An example of a question used for human evaluation of the recipe rewrite task on Amazon Mechanical
Turk.
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Figure 8: An example of a question used for human evaluation of the recipe rewrite task on Amazon Mechanical
Turk.
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Fluency Dietary Const. Closeness to Source Diversity
Model Perplexity ↓ % Adherence ↑ ROUGE ↑ Trigram ↑
Non-learning

Rule-Based 10.92 96.6 98.77 0.557
Retrieval 11.09 93.9 26.78 0.380

Controllable Generation
GPT-2 N/A 97.6 21.14 0.530
PPLM 12.85 95.2 20.83 0.577
CTRL 13.14 94.6 25.52 0.433

Sentence-level Transfer
Seq2seq Copy 16.72 98.6 25.80 0.144
Transformer 9.85 96.3 27.54 0.328

Proposed Model Ablations
End-to-End Rewriter 9.69 97.6 25.81 0.481
No-Context Rewriter 13.91 99.9 32.13 0.591
Contextual Rewriter 12.38 97.1 31.28 0.652

+ GPT-2 Ingredient Prompt 16.37 99.8 29.36 0.573
+ Rule Ingredient Prompt 14.60 99.8 35.08 0.709

Table 15: Automatic metric results on model rewrites of 1000 randomly sampled recipes from the dev set. The
difference between bold and non-bold numbers is statistically significant with p < 0.001. We do not compare to
rule-based under closeness to source since it copies steps from the source, leading to an artificially high score.

Model Overall Dairy Nut-Free Egg-Free Vegan Veget. Alc.-Free Fish-Free
Non-learning

Rule-Based 96.1 95.1 96.9 96.5 93.5 98.6 98.9 97.8
Retrieval 93.4 91.9 99.2 95.5 84.9 92.8 96.4 98.8

Controllable Generation
GPT-2 96.4 95.9 98.5 99.3 91.1 96.0 99.8 100.0
PPLM 94.9 92.9 97.6 99.5 89.1 93.6 100.0 100.0
CTRL 94.3 92.3 95.8 95.6 90.1 95.4 100.0 100.0

Sentence-level Transfer
Seq2seq Copy 99.0 97.2 100.0 100.0 99.3 99.1 100.0 99.3
Transformer 93.5 89.8 98.1 98.7 87.5 92.2 98.7 100.0

Proposed Model Ablations
End-to-End Rewriter 97.0 97.1 99.4 98.4 91.8 96.1 100.0 100.0
No-Context Rewriter 99.9 100.0 100.0 100 99.8 100.0 100.0 100.0
Contextual Rewriter 99.6 99.9 100.0 100.0 98.5 99.1 100.0 100.0
+ GPT-2 Ing. Prompt 99.6 99.7 99.7 99.6 98.9 99.5 100.0 100.0
+ Rule Ing. Prompt 99.5 99.7 99.7 100 99.2 98.2 100.0 99.2

Table 16: Further detail on dietary constraint accuracy for 1000 randomly sampled recipes from the test set.

Fluency Dietary Const. Closeness to Source Diversity
Model Perplexity ↓ % Adherence ↑ ROUGE ↑ Trigram ↑
Human Rewrite 13.91 99.7 77.08 0.906
Contextual Rewriter + Rule Ing. Prompt 20.28 96.3 35.44 0.836

Table 17: Comparison of the rewrites done by humans to the Contextual Rewriter + Rule Prompt on a subset of
30 vegetarian recipes from the test set.


