@inproceedings{lu-ng-2020-conundrums,
title = "Conundrums in Entity Coreference Resolution: Making Sense of the State of the Art",
author = "Lu, Jing and
Ng, Vincent",
editor = "Webber, Bonnie and
Cohn, Trevor and
He, Yulan and
Liu, Yang",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.emnlp-main.536",
doi = "10.18653/v1/2020.emnlp-main.536",
pages = "6620--6631",
abstract = "Despite the significant progress on entity coreference resolution observed in recent years, there is a general lack of understanding of what has been improved. We present an empirical analysis of state-of-the-art resolvers with the goal of providing the general NLP audience with a better understanding of the state of the art and coreference researchers with directions for future research.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="lu-ng-2020-conundrums">
<titleInfo>
<title>Conundrums in Entity Coreference Resolution: Making Sense of the State of the Art</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jing</namePart>
<namePart type="family">Lu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vincent</namePart>
<namePart type="family">Ng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Bonnie</namePart>
<namePart type="family">Webber</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Trevor</namePart>
<namePart type="family">Cohn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yulan</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Despite the significant progress on entity coreference resolution observed in recent years, there is a general lack of understanding of what has been improved. We present an empirical analysis of state-of-the-art resolvers with the goal of providing the general NLP audience with a better understanding of the state of the art and coreference researchers with directions for future research.</abstract>
<identifier type="citekey">lu-ng-2020-conundrums</identifier>
<identifier type="doi">10.18653/v1/2020.emnlp-main.536</identifier>
<location>
<url>https://aclanthology.org/2020.emnlp-main.536</url>
</location>
<part>
<date>2020-11</date>
<extent unit="page">
<start>6620</start>
<end>6631</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Conundrums in Entity Coreference Resolution: Making Sense of the State of the Art
%A Lu, Jing
%A Ng, Vincent
%Y Webber, Bonnie
%Y Cohn, Trevor
%Y He, Yulan
%Y Liu, Yang
%S Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)
%D 2020
%8 November
%I Association for Computational Linguistics
%C Online
%F lu-ng-2020-conundrums
%X Despite the significant progress on entity coreference resolution observed in recent years, there is a general lack of understanding of what has been improved. We present an empirical analysis of state-of-the-art resolvers with the goal of providing the general NLP audience with a better understanding of the state of the art and coreference researchers with directions for future research.
%R 10.18653/v1/2020.emnlp-main.536
%U https://aclanthology.org/2020.emnlp-main.536
%U https://doi.org/10.18653/v1/2020.emnlp-main.536
%P 6620-6631
Markdown (Informal)
[Conundrums in Entity Coreference Resolution: Making Sense of the State of the Art](https://aclanthology.org/2020.emnlp-main.536) (Lu & Ng, EMNLP 2020)
ACL