@inproceedings{lei-etal-2020-examining,
title = "Re-examining the Role of Schema Linking in Text-to-{SQL}",
author = "Lei, Wenqiang and
Wang, Weixin and
Ma, Zhixin and
Gan, Tian and
Lu, Wei and
Kan, Min-Yen and
Chua, Tat-Seng",
editor = "Webber, Bonnie and
Cohn, Trevor and
He, Yulan and
Liu, Yang",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.emnlp-main.564",
doi = "10.18653/v1/2020.emnlp-main.564",
pages = "6943--6954",
abstract = "In existing sophisticated text-to-SQL models, schema linking is often considered as a simple, minor component, belying its importance. By providing a schema linking corpus based on the Spider text-to-SQL dataset, we systematically study the role of schema linking. We also build a simple BERT-based baseline, called Schema-Linking SQL (SLSQL) to perform a data-driven study. We find when schema linking is done well, SLSQL demonstrates good performance on Spider despite its structural simplicity. Many remaining errors are attributable to corpus noise. This suggests schema linking is the crux for the current text-to-SQL task. Our analytic studies provide insights on the characteristics of schema linking for future developments of text-to-SQL tasks.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="lei-etal-2020-examining">
<titleInfo>
<title>Re-examining the Role of Schema Linking in Text-to-SQL</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wenqiang</namePart>
<namePart type="family">Lei</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Weixin</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhixin</namePart>
<namePart type="family">Ma</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tian</namePart>
<namePart type="family">Gan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wei</namePart>
<namePart type="family">Lu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min-Yen</namePart>
<namePart type="family">Kan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tat-Seng</namePart>
<namePart type="family">Chua</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Bonnie</namePart>
<namePart type="family">Webber</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Trevor</namePart>
<namePart type="family">Cohn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yulan</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In existing sophisticated text-to-SQL models, schema linking is often considered as a simple, minor component, belying its importance. By providing a schema linking corpus based on the Spider text-to-SQL dataset, we systematically study the role of schema linking. We also build a simple BERT-based baseline, called Schema-Linking SQL (SLSQL) to perform a data-driven study. We find when schema linking is done well, SLSQL demonstrates good performance on Spider despite its structural simplicity. Many remaining errors are attributable to corpus noise. This suggests schema linking is the crux for the current text-to-SQL task. Our analytic studies provide insights on the characteristics of schema linking for future developments of text-to-SQL tasks.</abstract>
<identifier type="citekey">lei-etal-2020-examining</identifier>
<identifier type="doi">10.18653/v1/2020.emnlp-main.564</identifier>
<location>
<url>https://aclanthology.org/2020.emnlp-main.564</url>
</location>
<part>
<date>2020-11</date>
<extent unit="page">
<start>6943</start>
<end>6954</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Re-examining the Role of Schema Linking in Text-to-SQL
%A Lei, Wenqiang
%A Wang, Weixin
%A Ma, Zhixin
%A Gan, Tian
%A Lu, Wei
%A Kan, Min-Yen
%A Chua, Tat-Seng
%Y Webber, Bonnie
%Y Cohn, Trevor
%Y He, Yulan
%Y Liu, Yang
%S Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)
%D 2020
%8 November
%I Association for Computational Linguistics
%C Online
%F lei-etal-2020-examining
%X In existing sophisticated text-to-SQL models, schema linking is often considered as a simple, minor component, belying its importance. By providing a schema linking corpus based on the Spider text-to-SQL dataset, we systematically study the role of schema linking. We also build a simple BERT-based baseline, called Schema-Linking SQL (SLSQL) to perform a data-driven study. We find when schema linking is done well, SLSQL demonstrates good performance on Spider despite its structural simplicity. Many remaining errors are attributable to corpus noise. This suggests schema linking is the crux for the current text-to-SQL task. Our analytic studies provide insights on the characteristics of schema linking for future developments of text-to-SQL tasks.
%R 10.18653/v1/2020.emnlp-main.564
%U https://aclanthology.org/2020.emnlp-main.564
%U https://doi.org/10.18653/v1/2020.emnlp-main.564
%P 6943-6954
Markdown (Informal)
[Re-examining the Role of Schema Linking in Text-to-SQL](https://aclanthology.org/2020.emnlp-main.564) (Lei et al., EMNLP 2020)
ACL
- Wenqiang Lei, Weixin Wang, Zhixin Ma, Tian Gan, Wei Lu, Min-Yen Kan, and Tat-Seng Chua. 2020. Re-examining the Role of Schema Linking in Text-to-SQL. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 6943–6954, Online. Association for Computational Linguistics.