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Abstract

Spoken Language Understanding infers se-
mantic meaning directly from audio data, and
thus promises to reduce error propagation
and misunderstandings in end-user applica-
tions. However, publicly available SLU re-
sources are limited. In this paper, we release
SLURP, a new SLU package containing the
following: (1) A new challenging dataset in
English spanning 18 domains, which is sub-
stantially bigger and linguistically more di-
verse than existing datasets; (2) Competitive
baselines based on state-of-the-art NLU and
ASR systems; (3) A new transparent metric
for entity labelling which enables a detailed er-
ror analysis for identifying potential areas of
improvement. SLURP is available at https:
//github.com/pswietojanski/slurp

1 Introduction

Traditionally, Spoken Language Understanding
(SLU) uses a pipeline transcribing audio into
text using Automatic Speech Recognition (ASR),
which is then mapped into a semantic structure via
Natural Language Understanding (NLU). However,
this modular approach is prone to error propaga-
tion from noisy ASR transcriptions, and ASR in
turn is not able to disambiguate based on seman-
tic information. End-to-end (E2E) approaches on
the other hand, can benefit from joint modelling.
One of the main bottlenecks for building E2E-SLU
systems, however, is the lack of large and diverse
datasets of audio inputs paired with correspond-
ing semantic structures. Publicly available datasets
to date are limited in terms of lexical and seman-
tic richness (Lugosch et al., 2019b), number of
vocalizations (Coucke et al., 2018), domain cover-
age (Hemphill et al., 1990; Dahl et al., 1994) and
semantic contexts (Godfrey et al., 1992; Jurafsky
and Shriberg, 1997). In this paper, we present the

∗Authors contributed equally.

User: “Make a calendar entry for brunch on Satur-
day morning with Aaronson.”

Scenario: Calendar
Action: Create entry
Entity tags and lexical fillers: [event name:

brunch], [date: Saturday], [timeofday:
morning], [person: Aaronson]

Figure 1: Example annotation from SLURP dataset.

Spoken Language Understanding Resource Pack-
age (SLURP), a publicly available multi-domain
dataset for E2E-SLU, which is substantially big-
ger and more diverse than existing SLU datasets.
SLURP is a collection of ~72k audio recordings
of single turn user interactions with a home as-
sistant, annotated with three levels of semantics:
Scenario, Action and Entities, as in Fig. 1, includ-
ing over 18 different scenarios, with 46 defined
actions and 55 different entity types as listed on
https://github.com/pswietojanski/slurp.1

In order to further support SLU development, we
propose SLU-F1, a new metric for entity prediction,
which is specifically designed to assess error prop-
agation in structured E2E-SLU tasks. This metric
has 3 main advantages over the commonly used ac-
curacy/F1 metric, aimed at supporting SLU devel-
opers: First, it computes a distribution rather than
a single score. This distribution is (1) inspectable
and interpretable by system developers, and (2) can
be converted into a confidence score which can be
used in the system logic (akin to previously avail-
able ASR confidence scores). Finally, the distri-
bution reflects errors introduced by ASR and their
impact on NLU and thus (3) gives an indication
of the scope of improvement that can be gained
by E2E approaches. Using this metric, we evalu-
ate 4 baseline systems that represent competitive

1Note that Action & Entities are also referred to as ‘In-
tent’. Entities consist of ‘Tags’ and ‘Fillers’, aka. ‘Slots’ and
’Values’.

https://github.com/pswietojanski/slurp
https://github.com/pswietojanski/slurp
https://github.com/pswietojanski/slurp
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pipeline approaches, i.e. 2 state-of-the-art NLU sys-
tems and 2 ASR engines. We conduct a detailed
error analysis of cases where E2E could have made
a difference, i.e. error propagation and semantic
disambiguation.

2 Related Work

The first corpora containing both audio and se-
mantic annotation reach as far back as the The
Air Travel Information System (ATIS) corpus
(Hemphill et al., 1990) and the Switchboard-
DAMSL Labeling Project (Jurafsky and Shriberg,
1997). However, it was not until recently when
the first E2E approaches to SLU were introduced
(Serdyuk et al., 2018; Haghani et al., 2018). Since
then, one of the main research questions is how to
overcome data sparsity by e.g. using transfer learn-
ing (Schuster et al., 2019; Tomashenko et al., 2019),
or pre-training (Lugosch et al., 2019b). Here, we
present a new corpus, SLURP, which is consider-
ably bigger than previously available corpora. In
particular, we directly compare our dataset to the
two biggest E2E-SLU datasets for the English lan-
guage: The Snips benchmark (Coucke et al., 2018)
and the Fluent Speech Command (FSC) corpus
(Lugosch et al., 2019b). With respect to these re-
sources, SLURP contains ~6 times more sentences
than Snips, ~2.5 times more audio examples than
FSC, while covering 9 times more domains and be-
ing on average 10 times lexically richer than both
FSC and Snips, see Section 3.3. SLURP repre-
sents the first E2E-SLU corpus of this size for the
English language. The only existing comparable
project is represented by the CASTLU dataset (Zhu
et al., 2019) for Chinese Mandarin.

3 SLURP data

3.1 Data Collection

SLURP was collected for developing an in-home
personal robot assistant (Miksik et al., 2020). First,
we collected textual data by prompting Mechani-
cal Turk (AMT) workers to formulate commands
towards the robot, using 200 pre-defined prompts
such as “How would you ask for the time/ set an
alarm/ play your favourite music?” etc. We care-
fully designed the prompts to avoid lexical priming
and thus increase linguistic variability of the col-
lected data. This data has been manually annotated
at scenario, action and entity level, and released as
a text-only NLU benchmark (Liu et al., 2019). The
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Figure 2: Amounts of data in SLURP matching given
WER levels.

textual data also serves as gold standard transcrip-
tions for the audio data.

The audio data was collected in acoustic con-
ditions matched to a typical home or office envi-
ronment. We asked 100+ participants to read out
the collected prompts on a tablet and to provide
demographic background information, see Table 1.
Speech was captured at distance with a microphone
array, but some users were also equipped with a
close-talking headset microphone (though, distant
and close-talk channels are not synchronised at the
sample level). Most recording sessions lasted 1
hour and were split into 4 parts. In each part, the
technician changed position of the microphone ar-
ray in the collection place. Users were encouraged
to vary their location in the room from utterance
to utterance (seating, standing or walking), and for
some utterances not to speak directly to the mic ar-
ray in order to resemble realistic conditions. These
parameters are not logged with the dataset, how-
ever, they do pose increased challenges for ASR
(Marino and Hain, 2011).

Female Male Native Non-Native Unk.

37.3% 32.2% 25.5% 44% 30.5%

Table 1: Participants’ demographic statistics.

3.2 Audio Data Processing

For quality control of the audio data, we automati-
cally verified i) whether the participant uttered the
right / complete SLU query as prompted and ii) if
the files were appropriately end-pointed. We used
the transcriptions of two ASR systems (referred
to as Multi-ASR and Google-ASR, see Sec 5.1).
These systems were not estimated from SLURP
acoustic data, thus remain unbiased and do not
reinforce potential errors. First, we removed all
data that failed to force-align to transcripts using
Multi-ASR. Then for the remainder we derived
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the SLU related confidences based on the matched
Word-Error Rate (WER) between textual prompts
and the obtained ASR hypotheses (calculated for
both utterance and entity fillers), as well as cross-
mic validation between close and distant micro-
phones, see Figure 2 (Right). Note that the higher
matched WER does not necessarily imply the file
lacks the expected content, as simply the file could
be more challenging to automatically recognise. At
the same time, from SLU perspective, one does
not necessarily need grammatically correct utter-
ances, as long as the they carry the information
necessary to understand and execute the query. Fig-
ure 2 (Left) shows that for nearly 60% of the data
at least one ASR system achieved a perfect score
(WER=0), and this increases to ~73% after includ-
ing utterances with imperfect sentence error rates
but correct entity fillers (EntityWER=0). After fil-
tering, SLURP comprises ~58 hours of acoustic
material. See Table 2 for detailed statistics.

In addition, we provide SLURP-synth following
(Lugosch et al., 2019a), where we replace filtered
or missing recordings with synthetic vocalisations
from Google’s Text-to-Speech system2 using 34
different synthetic English voices.

3.3 Linguistic Analysis and Comparison

In this Section, we compare SLURP with the most
recent publicly available E2E-SLU datasets: The
Fluent Speech Command (FSC) corpus (Lugosch
et al., 2019b) and the Snips benchmark (Coucke
et al., 2018), which are also set in the smart-home
domain. Snips covers 10 domains. However, only
2 domains have been vocalised, resulting in ~6K
audio files. FSC, on the other hand, is considerably
bigger than Snips in terms of audio recordings, in-
cluding ~30k vocalisations. However, the provided
semantics only cover a small subset of actions with
no more than two fixed entity types as arguments.
In the following, we compare these dataset along
four dimensions in order to get a first estimate of
SLURP’s level of complexity.
Audio analysis: Table 2 summarises the audio
data for each dataset. Audio files are differenti-
ated in close and far range microphone. As shown,
SLURP has ~1.8× more speakers, more than dou-
ble the audio files than the biggest dataset FSC,
however FSC has an higher audio-per-sentence ra-
tio. Demographic statistics are reported in Table 1.

2https://cloud.google.com/
text-to-speech

FSC Snips SLURP SLURP
-synth

Speakers 97 69 177 34
Audio files 30,043 5,886 72,277 69,253

– Close range 30,043 2,943 34,603 –
– Far range – 2,943 37,674 –

Audio/Sentence 121.14 2.02 4.21 3.87
Duration [hrs] 19 5.5 58 43.5
Avg. length [s] 2.3 3.4 2.9 2.3

Table 2: Audio file statistics.

Lexical analysis: Table 3 provides an overview of
different measures of lexical richness and diversity,
following (Novikova et al., 2017), using both lexi-
calised (LEX) and delexicalised (DELEX) versions
of the datasets (delexicalisation is performed by
replacing each entity span with the entity label).
Note that delexicalisation has a more severe effect
on FSC and Snips, which indicates that most of
their lexical richness and diversity stems from en-
tity names. On average SLURP has ~100× more
tokens, lemmas, bigrams and trigrams than FSC,
and ~10× more than Snips. In addition, we com-
pute the following lexicographic measures using
the Lexical Complexity Analyser (Lu, 2012). Lexi-
cal Sophistication (LS2) (Laufer, 1994) is defined
as Ts/T , with Ts being the number of sophisticated
types of (unique) words3 and T being the num-
ber of types of words in a dataset. The Corrected
Verb Sophistication (CSV1) (Wolfe-Quintero et al.,
1998) is evaluated as Tsvb/

√
2Nvb, with Tsvb the

number of types of sophisticated verbs and Nvb

the total number of verbs in a dataset. The Mean
Segmental Text-to-Token Ratio (MSTTR) (Johnson,
1944) is the average Text-to-Token Ratio (TTR –
T/N ) over all the segments of 104 words, with N
the number of words in a dataset. The MSTTR is
used to capture the variation of classes of words.
Again, SLURP shows higher levels of lexical so-
phistication and richness than the other datasets,
especially in the delexicalised case. Note that lex-
icalised version of Snips contains many names of
artists and bands in the music scenario, which con-
tributes to enlarge the set of sophisticated words
Ts. The only measure where SLURP doesn’t out-
perform the other datasets is average sentence
length. SLURP contains, among others, shorter
interactions, such short acknowledgements, elliptic
questions and atomic commands, whereas Snips is

3Sophisticated words are considered words not in the 2000
more frequent words in English language.

4Standard size of a segment for written text is 50, but
we are here considering short utterances, so we lowered this
number to 10.

https://cloud.google.com/text-to-speech
https://cloud.google.com/text-to-speech
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FSC Snips SLURP SLURP-synt
LEX DELEX LEX DELEX LEX DELEX LEX DELEX

Sentences 248 190 2,912 1,437 17,181 15,433 19,711 16,707
Average Sentence length 4.49 – 7.48 – 6.93 – 7.27 –
Distinct Tokens 96 89 2,182 271 6,467 3,774 5,974 3,553
Distinct Tokens occurring once 31 36 1825 120 3,007 1,778 2,799 1,676
Distinct Lemmas 102 92 2193 250 5,501 3,080 5,119 2,920
Distinct Bigrams 218 182 4,004 1,355 32,303 21,724 28,988 20,308
Distinct Bigrams occurring once 97 97 3,066 698 21,997 14,095 19,360 12,637
Distinct Trigrams 250 198 5,703 2,408 50,422 37,417 45,631 35,548
Distinct Trigrams occurring once 131 119 4,499 1,543 40,184 28,393 34,856 25,553
Lexical Sophistication (LS2) 0.35 0.31 0.87 0.41 0.79 0.69 0.79 0.68
Corrected Verb Sophistication (CVS1) 0.42 0.38 0.72 0.59 5.17 3.54 4.58 3.20
Mean segmental TTR (MSTTR) 0.71 0.82 0.78 0.86 0.92 0.96 0.93 0.96

Table 3: Analysis of Lexical diversity and sophistication.

FSC Snips SLURP SLURP-synt
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Figure 3: Syntactic complexity on D-Level scale,
where higher levels correspond to more complex,
deeper syntactic structures.

mostly composed of commands of similar length,
often including multiword named entities.
Syntactic analysis: Next, we use the D-Level
Analyser (Lu, 2009) to evaluate the syntactic com-
plexity of user utterances according to the revised
D-Level scale (Covington et al., 2006), where
higher levels correspond to more complex, deeper
syntactic structures, e.g. 0-1 levels include simple
sentences, while higher levels presents embedded
structures, subordinating conjunction, etc. Figure
3 shows the percentages on the D-Level scale for
each dataset. Overall, all the datasets present a
majority of Level 0 and 1 sentences. This can be
explained with the nature of the application domain,
i.e. a smart-home assistant. FSC contains mostly
Level 0 sentences (~89%), with some (~9%) Level
4 ones. 89% of Snips sentences fall into Level 0
and 1, against only 74% of SLURP. The remaining
11% of Snips are mostly Level 4 sentences, while
SLURP appears more mixed, with even a ~5% of
Level 7 sentences.
Semantic Analysis: Finally, we compare the
datasets according to their semantic content.
SLURP is annotated with three layers of semantics,
namely scenarios, actions and entities, where each

FSC Snips SLURP SLURP
-synt

Scenarios 2 2 18 18
Actions 6 7 46 54
Entities 2 4 56 56
Tot. Entities 334 2,870 16,792 14,623
Entity/Sentence 1.35 0.98 0.97 0.65
Unique Entities 16 1,348 5,613 4619

Table 4: Semantic analysis of the number of scenarios,
actions and entity types, the total number of annotated
entities, and the number of unique entities, i.e. entities
whose lexical filler appears only once.

sentence is annotated with one scenario and one
action, see Fig. 1, similar to annotations used in
(Budzianowski et al., 2018; Schuster et al., 2019).
FSC and Snips contain actions and entities as well,
although they do not explicitly annotate the sce-
narios, however these can be deducted from the
dataset file structure. The results in Table 4 show
that SLURP’s semantic coverage is 9 times wider
than other datasets in terms of scenarios, and ~6.5
times in terms of actions, where a higher number
of scenarios results in a higher number of actions.
FSC has the highest entity/sentence ratio, though it
only has 16 unique entities. Snips appears to be the
dataset with highest Unique Entities/Total Entities
ratio, ~50%, against ~33% of SLURP. Again, this
is due to the frequent use of proper names.

4 SLURP Metrics

The standard metric for evaluating E2E-SLU is ac-
curacy, which is defined as “the accuracy of all slots
for an utterance taken together – that is, if the pre-
dicted intent differs from the true intent in even one
slot, the prediction is deemed incorrect” (Lugosch
et al., 2019b). However, this notion of accuracy is
problematic when it comes to evaluating entities,
as it does not account for the interplay between se-
mantic mislabelling and textual misalignment. Nor
does it differentiate between entity label and lexical
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Gold: [event name: brunch], [date: Saturday],
[timeofday: morning], [person: Aaron-
son]

SLU: [event name: brunch], [date: Saturday],
[date: morning], [person: Aron’s son]

Figure 4: Continued example from Figure 1: Errors in
SLU entity tagging.

filler, as in Fig. 4, where lexical filler is defined as
span over tokens in the original sentence.5

Formally, given a sentence s, let E and Ê be
the set of gold and predicted entities, respectively.
Each ei = 〈li, fi〉 ∈ E is a tuple where li ∈ L
is the label drawn from the list of available entity
labels L, while fi = [tm, . . . , tn] is the lexical
filler, defined as a span of consecutive tokens of s
such that 1 ≤ m ≤ n ≤ |s|. Similarly, predicted
entities are of the form êk = 〈l̂k, f̂k〉 ∈ Ê . In span-
based metrics, two entities e1 and e2 are identical
(e1 =:= e2) when both labels and lexical fillers are
the same (l1 = l2∧f1 = f2). A match is thus found
only whenever the gold and predicted entities are
identical, i.e. ei =:= êk. This evaluation method
holds in NLU because entities are tagged over the
same textual sequence. When evaluating E2E-SLU,
where entities are identified out of a wave form,
this strict coupling with the token sequence may no
longer apply. Note that pipeline systems for SLU
are affected as well since they operate over ASR
transcribed sentences, which can consistently differ
from the original gold transcription.

To account for this mismatch, we propose SLU-
F1, a new metric which does not overly penalise
misalignments caused by ASR errors. In addition,
it is able to capture the quality of transcriptions
and entity tagging errors at the same time in a sin-
gle metric. As such, this metric allows to directly
compare E2E and pipeline systems. In particu-
lar, SLU-F1 combines span-based F1 evaluation
with a text-based distance measure dist, e.g. WER.
The equality property =:= is relaxed by allowing
gold and predicted entities (ei and êk) to match
(ei =:= êk) when the corresponding labels are
identical (li = l̂k), even when the fillers are not
identical. In this case we increment the True Pos-
itives (TPs) by 1. To account for lexical distance/
mismatch, we compute the dist between gold and
predicted fillers (dist(fi, f̂k)), and increment the
False Positives (FPs) and False Negatives (FNs)

5In traditional NLU systems this is identified with pairs of
start-end tokens or chars, or token index spans.

of this amount, as in Algorithm 1. In the case
of a predicted entity label matching with more
than one gold entity, e.g. when two or more en-
tities with the same label are present, we opt for a
non-conservative approach, selecting the gold an-
notation minimising the dist as a candidate. The
assumption is that the pair of entities is most likely
referring to the same text span. We use two dis-
tance functions to capture different aspects of pos-
sible transcription mistakes: WER (Word-F1) and
the normalised Levenshtein distance on character
level (Char-F1). WER is a strict token-level metric,
which outputs errors/null matches whenever a mis-
matching or misalignment of tokens is observed.
The character-based Levenshtein distance, on the
other hand, offers the opposite perspective. By
computing character-based similarities, it is much
less susceptible to small variations of input strings,
and thus better accounting for local transcription
errors which do not affect NLU tagging. For ex-
ample, Word-F1 will penalise small morphological
differences e.g. singular vs. plural as in pizza vs.
pizzas, which are often seen in transcriptions. This
over-penalises NLU outputs, e.g. the tagging of
pizzas may be semantically correct. Char-F1 on the
other hand does not over-penalise NLU, but it also
may provide a positive score when two fillers have
similar characters, but are semantically and phonet-
ically unrelated. In other words, Word-F1 shows
the influence of ASR on NLU, whereas Char-F1
gives an indication of NLU performance despite
transcription noise. These dist-F1 metrics (dist =
Word or Char) metric are similar to the fuzzy match-
ing mechanism proposed in (Rastogi et al., 2020).
They fundamentally differ for the adopted string
matching schema: any dist-F1 considers string or-
dering to score string similarity, while the fuzzy
mechanism is instead order invariant.

Consider the illustrative entity tagging example
in Figure 4. Here, Aaronson has been wrongly
transcribed into Aron’s son, and morning has
been wrongly tagged with date. A dist−F1
will score the predicted entities as follows: both
[event name: brunch] and [date: Saturday]
contribute with a +1 to the TPs, since both la-
bel and filler correspond to gold information. The
wrong label associated with morning increases the
FPs of 1, although it is correctly transcribed. It
follows that the entity timeofday is not pre-
dicted, increasing the FNs of 1. Finally, [person:
Aron’s son] is correctly labelled, but its filler is
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partially wrong. It thus contributes to the TPs
by 1, but FPs and FNs are both incremented by
dist(Aaronson,Aron’s son).

Algorithm 1 dist-F1 for a sentence s
Input E , Ê ,

TP, FP, FN ← 0
Ls ← set of gold entity labels in s
dist← a text-based distance metric

Output: TP, FP, FN

1: for each ê ∈ Ê do
2: if ê.label ∈ Ls then
3: Pl ← {(e, ê) | ∀e ∈ E . e.label = ê.label}
4: if Pl.size > 0 then
5: (e, ê)← argmin(e,ê)∈Pl

dist(e, ê)
6: TP += 1
7: FP += dist(e.filler, ê.filler)
8: FN += dist(e.filler, ê.filler)

9: E .remove(e), Ê .remove(ê)
10: else
11: FP += 1, Ê .remove(ê)
12: end if
13: else
14: FP += 1, Ê .remove(ê)
15: end if
16: end for
17: for e ∈ E do
18: FN += 1, E .remove(e)
19: end for

Finally, we combine Word-F1 and Char-F1 in a
single number SLU-F1, which evaluates the final
performance over the sum of the confusion matri-
ces obtained with Word-F1 and Char-F1.6

5 Experiments

We now establish the performance of different base-
line systems on the SLURP corpus. As demon-
strated in Section 3.1, SLURP is linguistically more
diverse than previous datasets, and therefore more
challenging for SLU. We first provide an evaluation
of two ASR baselines to show the complexity of the
acoustic dimension. We then evaluate the semantic
dimension, by testing the corpus against state-of-
the-art NLU systems. We finally combine ASR and
NLU, implementing several SLU pipelines.

Note that so far, the direct comparison of E2E-
SLU with pipeline approaches are mainly limited
to baselines developed on the same dataset, e.g. a
multistage neural model in which the two stages
that correspond to ASR and NLU are trained inde-
pendently, but using the same training data (Desot
et al., 2019; Haghani et al., 2018). We follow a dif-
ferent approach, which, as we argue, is closer to the

6The official script for analysis and evaluation will
be released with SLURP at https://github.com/
pswietojanski/slurp.

real-life application scenario: We use competitive
ASR systems and state-of-the-art NLU systems.

5.1 Acoustic evaluation

We run the analysis of the SLURP acoustic com-
plexity by testing 2 different ASR systems: In-
domain ASR trained on SLURP data, and Multi-
ASR, which leverages a large amount of out-of-
domain data. Both are built with the Kaldi ASR
toolkit (Povey et al., 2011). Multi-ASR is a large-
scale system estimated from publicly available
acoustic data pooled together – Acoustic data in-
cluding, among others, LibriSpeech (Panayotov
et al., 2015), Switchboard (Godfrey et al., 1992),
Fisher (Cieri et al., 2004), CommonVoice (Ardila
et al., 2019), AMI (Carletta, 2007) and ICSI (Janin
et al., 2003),7 which is further augmented to in-
crease environmental robustness following (Ko
et al., 2017). In total, a time-delay neural network
acoustic model (Peddinti et al., 2015) is trained
on 24,000 hours of augmented audio material with
lattice-free maximum mutual information objec-
tive (Povey et al., 2016). For decoding, we use
a tri-gram Language Model (LM) that is an inter-
polation of an in-domain LM estimated from 60k
voice-command sentences8 and a background LM
estimated from Fisher transcripts. As shown in the
first block of Table 5, Multi-ASR offers a compet-
itive performance on this data when compared to
the off-the-shelf Google-ASR.9

SLURP-ASR shares the overall pipeline with
Multi-ASR, except the acoustic model is estimated
from the 40 hours of SLURP training data (83 hours
when pooled with SLURP-Synth) and bootstrapped
from forced-alignments obtained with Gaussian
mixture model build for Multi-ASR. Results for
this scenario are reported in the second block of
Table 5, where adding synthetic data shows 1.6%
improvement. For comparison, estimating acoustic
models from synthetic data alone (no augmenta-
tions) results in 98% WER on Test partition.

Finally, we perform supervised acoustic domain
adaptation (Bell et al., 2020) of Multi-ASR with
SLURP-Train by a method proposed in (Swieto-
janski et al., 2016), which achieves the best perfor-

7System build while third author was with Emotech LTD.
8This includes SLURP-Train and additional 50k sentences

that has been collected, but not annotated for NLU purposes.
9https://cloud.google.com/

speech-to-text/ tested on 20/05/2020 using the
command and search model. Note, that these systems
are not directly comparable as Multi-ASR benefits from
speaker adaptation, and an in-domain LM data.

https://github.com/pswietojanski/slurp
https://github.com/pswietojanski/slurp
https://cloud.google.com/speech-to-text/
https://cloud.google.com/speech-to-text/
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Dev Test

Google-ASR 24.0 24.7
Multi-ASR 16.7 17.3

SLURP-ASR (Train) 23.7 23.8
SLURP-ASR (Train + Synth) 22.4 22.2

Multi-ASR + Adapt w/ SLURP 16.3 16.2

Table 5: SLURP WER for different ASR systems.

mance by around 1% absolute on Test.
In sum, the large out-of-domain Multi-ASR

system performs better than the systems trained
on in-domain SLURP data. Best results are
achieved by using a pre-training approach, i.e.
Multi-ASR adapted to SLURP. This shows that,
despite SLURP’s absolute size, the acoustic data
is still too scarce to fully account for its lexical
richness and noise conditions. As such, SLURP is
a challenging dataset for ASR as well as for SLU.

5.2 Semantic evaluation

System Descriptions: We evaluate SLURP
against two state-of-the-art NLU models: HerMiT
(Vanzo et al., 2019) and SF-ID (E et al., 2019).
Both systems achieved state-of-the-art results on
the NLU Benchmark (Liu et al., 2019) and on
ATIS/Snips respectively. HerMiT’s architecture
is a hierarchy of self-attention mechanisms and
Bidirectional Long Short-Term Memory (BiLSTM)
encoders followed by Conditoinal Random Field
(CRF) tagging layers. Its multi-layered structure
resembles a top-down approach of Scenario, Ac-
tion and, Entity prediction, where each task ben-
efits from the information encoded by the previ-
ous stages, e.g. Entity detection can benefit from
sentence-level encodings.

SF-ID’s architecture is also based on atten-
tion, using a BiLSTM encoder and CRF tagger.
The model defines two subnets that communicate
through a reinforce vector. In order to compare
with HerMiT’s top-down approach, we choose the
opposite Entity-first propagation direction for SF-
ID, i.e. the entity detection task is executed first and
its encodings are used to feed the Intent detection
task. Note that while HerMiT uses a multi-layered
annotation scheme (Scenario and Action), SF-ID
can only handle a single layer of annotation. To this
end, we generate another combined semantic layer,
Scen Act, to feed SF-ID with a label composed by
the concatenation Scenario and Action.
Scenario and Action Prediction: We split
SLURP in train, development and test as in Table 6.

Train Dev Test

Sentences 11514 2033 2974
Audio files 50628 8690 13078
Tot. Entities 11367 2022 2823
Entity/Sentence 0.98 0.99 0.95
Total duration [hours] 40.2 6.9 10.3

Table 6: Data distribution of train, dev and test sets.

Scenario Action Scen Act

Gold/HerMiT 90.15 86.99 84.84
Gold/SF-ID 86.48 83.69 82.25

Multi/HerMiT 83.73 79.70 76.68
Multi/SF-ID 81.90 77.72 75.87
Google/HerMiT 81.68 76.58 73.41
Google/SF-ID 78.87 74.31 72.06

SLURP/HerMiT 82.31 78.07 74.62
Multi-SLURP/HerMiT 85.69 81.42 78.33

Table 7: System accuracy of Scenario and Action.

We first evaluate accuracy for Scenario, Action and
a combination of the two. Table 7 summarises the
results, where the top two rows are upper bounds
based on gold transcriptions. Note that even for
the gold transcriptions, both NLU systems perform
substantially below their state-of-the-art results on
the NLU benchmark (HerMiT=87.55) and Snips
respectively (SF-ID= 97.43). This further demon-
strates the complexity of SLURP, which also makes
it a challenging test bed for future research not only
for SLU, but also NLU. When moving on to ASR
transcribed data, the results in the middle of Table
7 show the Multi-ASR system in combination with
HerMiT achieves top performance for all 3 tasks.
Finally, the 3rd block reports HerMiT with ASR
from in-domain SLURP audio data (also see Table
5). The results show that our best performing sys-
tem, HerMiT with Multi-ASR + Adapt w/ SLURP,
is only ~5% below the gold standard despite 16%
WER. We hypothesise that this is due to robust Sce-
nario and Action encodings, which we will further
examine in our error analysis in Section 6.

Entity Prediction: We now analyse the results for
entity prediction in more detail using our proposed
metric SLU-F1. The results in Table 8 confirm
that HerMiT is the stronger NLU system on gold-
transcribed data and outperforms the other system
combinations for SLU in combination with Multi-
ASR. Again, these results suggest that the top-down
information flow of HerMiT (i.e. first decoding Sce-
nario, then Action and lastly Entity in a sequence)
is better suited for this complex dataset, which we
will further demonstrate in the following.
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Word-
F1

Char-
F1

SLU-
F1

F1

Gold/HerMiT – – – 78.19
Gold/SF-ID – – – 69.87

Multi/HerMiT 67.78 71.38 69.53 62.69
Multi/SF-ID 65.82 68.92 67.33 60.15
Google/HerMiT 64.01 68.12 66.00 58.00
Google/SF-ID 62.73 65.37 64.02 56.54

SLURP/HerMiT 65.48 68.56 66.99 59.79
Multi-SLURP/HerMiT 69.34 72.39 70.84 64.16

Table 8: System performance on entity prediction

No Errors ASR Errors NLU Errors ASR/NLU Errors
0
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2,000
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5,000

6,000
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3,490
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3,010

1,396

3,660

HerMiT SF-ID

Figure 5: Error propagation: No Errors refer to the
number of predicted entities that match the gold tran-
scriptions perfectly. ASR Errors count the number of
predictions where ASR outputs an unmatched candi-
date but the NLU system is nevertheless able to recover
the correct entities from the transcriptions. NLU Er-
rors count sentences where transcriptions are correct,
but entities do not match. ASR/NLU Errors count the
sentences where both ASR and NLU errors are present.

6 Error Analysis

6.1 Analysis of Error Propagation for
different NLU Approaches

We further describe the types of errors produced by
HerMiT and SF-ID for Entity Prediction on noisy
ASR data, as shown in Figure 5. Overall, HerMiT
has lower error rates for all but ASR errors. Nev-
ertheless, it is able to recover the correct entities
from the transcriptions. These results indicate that
HerMiT, using a top-down decoding approach –
going from the more general Scenario to the more
specific Action and Entity Prediction, is more ro-
bust to noise propagation than the bottom-up SF-ID
system.

6.2 Expressiveness of the SLU-F1 Metric
The results in Table 8 show that our proposed
metrics Word-F1 and Char-F1 both produce the
same ordering as F1. However, a Pearson’s correla-
tion between Word-F1 and Char-F1 shows that the
two metrics are only weakly correlated (ρ = 0.2,
p � 0.0001), which confirms that they are in-

deed measuring two different aspects despite pro-
ducing the same final ordering. In addition to an
overall performance score, the metrics give us a
distribution of value ranges, which can give us in-
sight on system behaviour. Figure 6 shows distri-
butions of entity-level dist value ranges over the
WER of the sentence for our top performing sys-
tem HerMiT/Multi-ASR. For entity-WER (Figure
6a), the distribution shows high density of entities
falling between sentence-WER= [0, 1] and entity-
WER= [0, 1]. When analysing sentences with cor-
rect transcriptions, i.e. sentence-WER=0, we find
only NLU errors, due to span misalignments. When
sentence-WER > 0, most of the entities are scored
with a values either in (0, 0.5], or in (0.5, 1]. In the
first case, we find NLU mistakes caused by shorten-
ing entity spans, e.g. “football” instead of “football
match”. The second range includes span shortening
and extensions, e.g. “Saturday morning” instead
of “Saturday”, as well as many mis-transcribed
entities, e.g. due to either morphological errors
(singular vs. plural), or transcription errors.

The distribution for entity-level normalised Lev-
enshtein is less spiked, as shown in Fig. 6b. As
for WER, all the entries with sentence-WER=0
and entity-Lev>0 correspond to correctly labelled
entities, whose span has been shortened or ex-
tended. Entities assigned with character-based Lev
values falling between (0, 0.2] mostly contain neg-
ligible ASR errors, such as morphological errors,
compound merging or explosion, or general tran-
scription mistakes, e.g. Sara vs. Sarah. Entities
with Lev= (0.2, 0.5] comprise both ASR errors,
as well as including minor NLU errors such as
shortened or extended entity spans. When entity-
Lev= (0.5, 0.8], we find mostly NLU errors due
to wrong span tagging. Finally, two types of NLU
errors fall in the range (0.8, 1.0]: Either span errors
with a substantial mismatch in length with gold
annotations, or more severe ASR errors.

7 Discussion

SLURP is not only bigger, but also a magnitude
more challenging than previous datasets. The pur-
pose of this new data release is not to provide yet
another benchmark dataset, but to provide a use-
case inspired new challenge, which is currently
beyond the capabilities of SOTA E2E approaches
(due to scalability, lack of data efficiency, etc.).

We have tested several SOTA E2E-SLU systems
on SLURP, including (Lugosch et al., 2019b) which
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Figure 6: Correlation between sentence-level WER (intervals of 0.5) and entity-level (a) WER values (intervals of
0.5), (b) normalised character-based Levenshtein values (intervals of 0.1).

produces SOTA results on the FSC corpus. How-
ever, re-training these models on this more complex
domain did not converge or result in meaningful
outputs. Note that these models were developed
to solve much easier tasks (e.g. a single domain).
Developing an appropriate model architecture is
left for future work. For this reason, in this work
we focus on benchmarking existing approaches.

We show that SOTA modular approaches are
able to provide a strong baseline for this challeng-
ing data, which has yet to be met by SOTA E2E
systems. We also argue that our modular baseline
is closer to how real-world applications build SLU
systems, nevertheless often overlooked when test-
ing E2E systems. As such, we consider our SOTA
modular baseline a major novel contribution.

8 Conclusion

In this paper, we present SLURP, a new resource
package for SLU. First, we present a novel dataset,
which is substantially bigger than other publicly
available resources. We show that this dataset is
also more challenging by first conducting a linguis-
tic analysis, and then demonstrating the reduced
performance of state-of-the-art ASR and NLU sys-
tems. Second, we propose the new SLU-F1 metric
for evaluating entity prediction in SLU tasks. In
a detailed error analysis we demonstrate that the
distribution of this metric can be inspected by sys-
tem developers to identify error types and system
weaknesses. Finally, we analyse the performance
of two state-of-the-art NLU systems on ASR data.
We find that a sequential decoding approach for
SLU, which starts from the more abstract notion of
scenario and action produces better results for en-
tity tagging, than an approach which works bottom
up, i.e. starting from the entities. Our error analysis
suggests that this is due to the former approach

being able to better account for noise by priming
entity tagging, which is a more challenging task
than scenario or action recognition.

In future work, we hope that SLURP will be a
valuable resource for developing E2E-SLU sys-
tems, as well as more traditional pipeline ap-
proaches to SLU. The next step is to extend SLURP
with spontaneous speech, which would again in-
crease its complexity, but also move it one step
closer to real-life applications.
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man, and Milica Gašić. 2018. Multiwoz - a large-
scale multi-domain wizard-of-oz dataset for task-
oriented dialogue modelling. In Proceedings of the
2018 Conference on Empirical Methods in Natural
Language Processing (EMNLP).

http://arxiv.org/abs/1912.06670
http://arxiv.org/abs/1912.06670
http://arxiv.org/abs/2008.06580
http://arxiv.org/abs/2008.06580


7261

Jean Carletta. 2007. Unleashing the killer corpus: ex-
periences in creating the multi-everything ami meet-
ing corpus. Language Resources and Evaluation,
41(2):181–190.

Christopher Cieri, David Miller, and Kevin Walker.
2004. The fisher corpus: a resource for the next
generations of speech-to-text. In LREC, volume 4,
pages 69–71.

Alice Coucke, Alaa Saade, Adrien Ball, Théodore
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