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Abstract

Captioning is a crucial and challenging task for
video understanding. In videos that involve
active agents such as humans, the agent’s ac-
tions can bring about myriad changes in the
scene. Observable changes such as move-
ments, manipulations, and transformations of
the objects in the scene, are reflected in con-
ventional video captioning. Unlike images, ac-
tions in videos are also inherently linked to
social aspects such as intentions (why the ac-
tion is taking place), effects (what changes due
to the action), and attributes that describe the
agent. Thus for video understanding, such
as when captioning videos or when answer-
ing questions about videos, one must have an
understanding of these commonsense aspects.
We present the first work on generating com-
monsense captions directly from videos, to
describe latent aspects such as intentions, ef-
fects, and attributes. We present a new dataset
“Video-to-Commonsense (V2C)” that contains
∼ 9k videos of human agents performing var-
ious actions, annotated with 3 types of com-
monsense descriptions. Additionally we ex-
plore the use of open-ended video-based com-
monsense question answering (V2C-QA) as a
way to enrich our captions. Both the genera-
tion task and the QA task can be used to enrich
video captions.

1 Introduction

When humans watch videos they can typically un-
derstand and reason about various aspects of the
scene beyond the visible objects and actions. This
involves understanding that some objects are active
agents that not only perform actions and manipu-
late objects, but are motivated by intentions, have
pre-conditions, and that their actions have an ef-
fect on the world and their own mental states. For
instance, in analyzing the video clip in Figure 1,

∗Equal Contribution

humans employ various capabilities such as percep-
tion, reasoning, inference, and speculation, to come
up with a description for the observable sequence
of events, but also reason about latent aspects such
as the intention of the group of runners “to win the
medal”, the effect of being “congratulated at the
finish line”, and the attribute “athletic”.

The above example also illustrates that recogni-
tion of objects, actions, and events is often not
enough; understanding causal relationships, so-
cial interactions, and commonsense aspects behind
them provides context and a more semantic inter-
pretation of the video (Gupta et al., 2009). A model
that can provide such detailed interpretations fa-
cilitates answering inferential questions, such as

“Will the player get angry later?”. However, ex-
isting visual understanding systems are unable to
perform such tasks that require speculative reason-
ing. A critical missing element in complex video
understanding is the capability of performing com-
monsense inference, especially a generative model.
Existing efforts seek to find textual explanations
or intentions of human activities as a classifica-
tion task (Vondrick et al., 2016) or a vision-to-text
alignment problem (Zhu et al., 2015).

In this paper we propose the Video to
Commonsense (V2C) framework to generate vi-
sually grounded commonsense descriptions about
the underlying event in the video, enriching the
factual description provided by a caption. Under
this framework a system is expected to generate
captions as well as three types of commonsense de-
scriptions (intention, effect, attribute) directly from
an input video. The V2C model can also be used
as a building block for downstream tasks such as
video question answering for questions requiring
commonsense. Inspired by (Bosselut et al., 2019),
our model – the “V2C-Transformer” utilizes: (1) a
video encoder to extract global representations of
the video, (2) a transformer decoder that generates

https://asu-active-perception-group.github.io/Video2Commonsense/index.html
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Group of runners get prepared to run a race.Conventional Caption

Commonsense-Enriched 
Caption

In order to win a medal, a group of runners get prepared to run a race. As a
result they are congratulated at the finish line. They are athletic.

Commonsense Question 
Answering

What happens next to the runners? {
Are congratulated at the finish line

become tired

Figure 1: Comparison of conventional video captioning with our commonsense-enriched captioning. Our captions
describe intention behind the action (red), attribute of the agent (blue), and effect of the action on the agent (green).

captions and commonsense descriptions, and (3)
a cross-modal self-attention module that exploits
joint visual-textual embeddings.

We curate the V2C dataset for training and
benchmarking models on this task. We adopt the
MSR-VTT video description dataset (Xu et al.,
2016) as a source of videos and captions. We
first utilize the ATOMIC machine commonsense
dataset (Sap et al., 2018) to get a list of candi-
date commonsense texts (intentions, effects, and
attributes), and rank these using a BERT-based (De-
vlin et al., 2019) model. Since these candidates are
retrieved without using the video and may not be
accurate, we instruct humans to watch the videos
and select, remove, or rewrite the texts retrieved
from ATOMIC. The text retrieved by ATOMIC helps
our human annotators to understand the format of
desired annotations, and also gives them a list of
suggestions. The human component in our annota-
tion procedure makes our data visually grounded
and relevant, linguistically diverse, and natural.

We additionally explore the use of our V2C-
Transformer architecture for a open-ended video
question answering task, where the questions are
about commonsense aspects from the video. For
this, we create a QA addendum of the V2C dataset
called V2C-QA. By asking questions about the la-
tent aspects in the video, our models are able to
enrich caption generation with three specific types
of commonsense knowledge.

Our contributions are summarized below:
1. We formulate the “V2C” task for enriching

video captioning by generating descriptions
of commonsense aspects.

2. We curate a video dataset annotated with cap-
tions and commonsense descriptions.

3. We present our V2C-Transformer architecture
that generates relevant commonsense descrip-
tions, and serves as a strong baseline.

4. We pose V2C as a video question answering
task and show that it can assist commonsense
caption generation.

2 Video to Commonsense (V2C)

Problem Formulation: Consider a video V con-
sisting of Nv frames described by sentence S .
Our Video-to-Commonsense (V2C) framework can
be used for generating commonsense descriptions
C under two settings. In the first setting (V2C-
Completion), we use ground-truth captions to
guide commonsense-enriched caption generation.
This task can be viewed as providing supplemen-
tary explanations to the caption. In the second
setting (V2C-Generation), we first learn to gener-
ate captions from videos, g(V ), and then use them
to generate commonsense descriptions.

V2C-Completion C = f(V ,S).

V2C-Generation C = f(V ,g(V )).
(1)

2.1 V2C-Transformer

The proposed Video2Commonsense Transformer
is a cross-modal model that generates captions and
commonsense-enriched descriptions from videos.
Our approach (Figure 2) adopts the “encoder-
decoder” design: a video encoder that extracts
global representations of the input video, and a
transformer decoder that produces relevant com-
monsense knowledge along with captions.

Video Encoder: We obtain per-frame ResNet-
152 (He et al., 2016) features for video V and
process them using an LSTM model (Sundermeyer
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Figure 2: The V2C-Transformer model architecture contains: (a) Video Encoder designed to take video frames as
input and encode them into frame-wise representations, (b) Decoder module consisting of a Caption Decoder and
a Commonsense Decoder, and (c) Transformer Decoder module containing a stack of N consecutive transformer
blocks (shown inside the dashed area).

et al., 2012), a standard architecture for modeling
long temporal sequences, and use the last hidden
states of the LSTM as the video representations.
We concatenate all previous hidden states from
each LSTM module as a final global video encod-
ing v, to provide the model with explicit context
using the temporal attention mechanism.

Decoder: The video encoding is used as input to
two decoder networks that use a transformer lan-
guage model (Radford et al., 2018) to generate a
caption and commonsense description, using an in-
ference mechanism similar to Bosselut et al. (2019).
Our model is a two-stage process that first predicts
the current events directly from videos, and then
produces the corresponding commonsense captions.
During training, the caption decoder DCAP takes
the video encoding (v) and ground truth caption
(s) as input to generate caption encoding (̂s), while
the commonsense decoder DCMS uses the concate-
nation of video and caption encoding to obtain the
commonsense description (c), as shown in Figure 1
(b). This arrangement enables the attention mod-
ule in commonsense decoder to attend to both the
video and caption context.

ŝ = DCAP(v, s), c = DCMS(v, ŝ). (2)

Transformer Decoder is composed of a stack of
transformer blocks (dashed area in (c) Figure 2),

whose main component is a self-attention architec-
ture. It takes as input the summation of word em-
bedding and the positional encoding offset by 1 po-
sition through masked multi-head attention, which
prevents the future words been seen. In our model,
we deploy two stacked decoder architectures for
both caption decoding and commonsense knowl-
edge decoding. The Transformer Block consists
of consecutive linear transformation: a multi-head
attention module (denoted asHM-ATT), a two-layer
feed forward network (HFFN), a layer normaliza-
tion operation, and a residual connection.

Multi-head Attention module To enable our
transformer decoder to generate commonsense de-
scriptions by using both the visual and textual con-
tent, we modify the multi-head attention module
(which acts as the basic unit in recent transformer
based language generation models (Radford et al.,
2018, 2019)) as a cross-modal module. HM-ATT

takes the input of the embedding of key (K), value
(V) and query (Q). The key and value in trans-
former block are the video encoding (caption de-
coder) or concatenation of video/caption encoding
(commonsense decoder), while the query is the out-
put from the previous transformer block. In the
masked multi-head attention module, K, V and Q
are the identical vectors of input embedding. For a
self-attention block with h heads,

HM-ATT(K, V, Q) = HFFN([x1, . . . , xh]), (3)
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Caption: A soldier fights with his enemy.

Events:
1.

Query Atomic 

ATOMIC Intentions Re-Ranked Intentions

PersonX begins to fight

PersonX attacks the enemy

PersonX repels PersonY attack

to be safe
to save his life
to get a revenge
cause damage to enemy
to protect his friends

...

to protect his friends

cause damage 

to get revenge

Probability

0.85

0.76

0.72

2.
BERT  

Re-Ranking 

3. Human Labeling 

Watch Video

Human Filtering

& Re-Writing

- to protect his country

- to defend himself 

- Since the soldier wants to defeat 

the enemy

Figure 3: The overall three-step pipeline (retrieval from
ATOMIC, BERT re-ranking, and human labeling) to
construct our V2C dataset.

where xi is computed by scaled dot-product atten-
tion operation, for head-index i, key-dimension
dkn, and transformation parameters Wi.

for DCAP, xi = SOFTMAX(
WQ

i Q · WK
i K′√

dk
)WV

i V,

for DCMS, xi = SOFTMAX(
WQ

i [v, s] · WK
i [v, s]

′
√
dk

)WV
i V.

3 The V2C Dataset

For the V2C task we need video clips annotated
with commonsense descriptions about the agents
in the video, as shown in Figure 1. While there are
video captioning datasets such as MSR-VTT (Xu
et al., 2016), the captions in these datasets describe
only the observable objects in the image, but do not
describe latent and commonsense aspects. We are
the first to curate such a dataset with annotations
describing the intention of agent to perform an
action, the effect of the action and the attribute of
the agent given the action.

MSR-VTT contains around 10k videos each 10
to 30 seconds long, belonging to 20 categories cov-
ering a variety of topics such as sports, music, news,
and home videos. Each video is accompanied by 20
human-annotated textual descriptions on average.
For training and benchmarking the novel V2C task,
we further complement MSR-VTT with event-level
commonsense annotations, i.e. event descriptions
with intentions, effects and attributes. We remove
captions and videos that do not have clear human
activities. This is because having such videos leads
to an imbalance in the number of captions for each

Type Video Caption Commonsense

Intention
Two guys are wrestling to beat the opponent
A man and woman are
singing

to express them-
selves musically

Attribute
A guy is singing in a crowd outgoing
Group of riders race on
motorcycles.

adventurous

Effect
A person is making a paper
airplane

gets excited to fly it

A man and a woman are
talking to each other

share ideas and opin-
ions

Table 1: Examples of commonsense annotations (inten-
tions, attributes and effects) retrieved from ATOMIC for
captions in MSR-VTT.

video, thus making it inappropriate to just evaluate
caption generation using BLEU scores.

ATOMIC (Sap et al., 2018) is an atlas of every-
day commonsense knowledge and contains 880k
triplets about causes and effects of human activ-
ities, organized as if-then relations, annotated by
crowd-sourced workers. This data can be catego-
rized based on causal relations, thereby giving us
the categories “cause”, “effect” and “attribute”, e.g.,
“if X wants to relax, then he will play video game.”

3.1 Querying from ATOMIC and Re-ranking

Since inferential knowledge in ATOMIC only cov-
ers human activities, we first retain only those cap-
tions in Msr-vtt that describe human activities. We
then select three queries from ATOMIC most simi-
lar to the caption, and extract the commonsense de-
scriptions corresponding to these queries. In order
to select a more reasonable subset of commonsense
descriptions, we first train a ranking model. We use
the BERT (Devlin et al., 2019) architecture for the
ranking model, trained on the ATOMIC dataset for
a binary classification task, to predict the relevance
of a candidate commonsense description with re-
spect to the event. We select the top three relevant
intentions, effects, and attributes for each caption.
This allows us to obtain a preliminary set of 9 com-
monsense annotations per video directly from the
ATOMIC dataset, relevant to the caption, albeit with
noise and annotations that are not relevant to the
video.

3.2 Detailed Human Annotation

Since we do not use the video to retrieve com-
monsense descriptions from ATOMIC, we employ
human workers to annotate our dataset. We recruit
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Relation Model CIDER PPL ↓ BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L

Attribute

S2VT (Venugopalan et al., 2015) - - 35.9 - - - - -
Attention-Enc-Dec (Gao et al., 2017) - - 38.3 - - - - -
Dense Captioner (Zhou et al., 2018) - - 46.0 - - - - -
Video CMS Transformer - - 47.3 - - - - -

Effect

S2VT (Venugopalan et al., 2015) 28.3 23.6 24.9 18.6 16.2 14.3 15.4 22.1
Attention-Enc-Dec (Gao et al., 2017) 29.5 22.0 26.5 19.4 18.8 15.1 17.5 23.9
Dense Captioner (Zhou et al., 2018) 36.9 16.0 33.7 24.8 21.0 20.2 20.0 29.9
Video CMS Transformer 37.3 15.6 34.8 25.9 22.5 20.4 20.8 30.6

Intention

S2VT (Venugopalan et al., 2015) 51.8 17.8 48.4 39.9 34.3 26.4 23.3 44.3
Attention-Enc-Dec (Gao et al., 2017) 52.1 16.0 51.1 42.6 35.5 28.2 24.3 48.0
Dense Captioner (Zhou et al., 2018) 60.3 12.0 59.3 47.0 37.3 31.5 28.0 53.1
Video CMS Transformer 62.0 11.7 60.8 48.4 39.1 34.1 28.5 54.6

Table 2: Evaluation of V2C completion task using CIDER, BLEU, Perplexity, Rouge, and Meteor metrics. We use
only BLEU-1 to evaluate the attribute generation since the average length of the ground truth is just less than 2.

two sets of human workers to watch the video, read
the caption and select/annotate the relevant com-
monsense descriptions for each video. The first set
is Amazon Mechanical Turkers (AMT) who select
relevant descriptions. The second set is skilled hu-
man annotators, screened from a set of university
students proficient in English, who are asked to pro-
vide annotations in their own words, and remove
or edit irrelevant annotations that were provided
by ATOMIC and AMT workers. This makes our
annotations not only grounded in the video, but
also more descriptive, linguistically diverse, and
of higher quality (see Figure 3). The descriptions
from ATOMIC, although not relevant to the video
in some cases, give our workers an idea about the
format of annotations desired. The skilled humans
reported that 95% of the captions were relevant,
and 65% of the ATOMIC descriptions were useful
in understanding the annotation task. Through this
procedure, we obtain 6819 videos for training and
2906 videos for testing, a total of 121,651 captions
(∼12 captions/video), each caption accompanied
with 5 commonsense knowledge annotations (V2C-
Raw set). In experiment, we use video captioning
technique to conduct the V2C completion task on
V2C-Raw set. In addition, we instruct human an-
notators to select and rewrite one raw phrase into
complete sentences that complement the captions.
In total we have 3 complete sentences per video
for intention/effect/attribute respectively, and this
yields a subset that allows our model to generate
complete story-like sentences (V2C-Clean Set). Ta-
ble 1 shows examples from the newly compiled
dataset. We conduct rigorous human evaluation
to evaluate the quality of our V2C dataset (“Gold
Annotations” in Table 3). Details about the dataset
creation process and quality control mechanisms
can be found in the Appendix.

4 Experiments

In this section we describe the loss function used
for training our model, additional details about
video pre-processing, hyper-parameters, and base-
line models, and the metrics used for evaluation.

Loss Function: The decoder parameters Θ are
trained to maximize the log-likelihood over the
training set given by L = Lcap + Lcms, where

Lcap =

NS∑
t=1

log Pr(yt|yt−1,v;Θ), and

Lcms =

NC∑
t=1

log Pr(yt|yt−1, [v, s̃];Θ).

(4)

yt denotes the one-hot vector probability of each
word at time t, and NS , NC denote the length of
the caption and commonsense respectively.

Setting: In order to obtain video representa-
tions, we uniformly sample 40 frames from each
video and extract features using feed ResNet (He
et al., 2016) pre-trained on Imagenet ILSVRC12
dataset (Deng et al., 2009) and get a 2048-d output
from the last layer. We use one-hot input (1-of-
N encoding) of the text input and pass it through
an embedding layer to produce a 1028-d hidden
vector. We use independent vocabularies for cap-
tioning and commonsense generation with sizes
27,603 and 24,010 respectively. Note that, as the
generated

Hyperparameters: Our decoder is a lightweight
transformer decoder consisting of 6 transformer
blocks with 8 attention heads each. We use Adam
optimizer with 5000 warm-up steps, and learning
rate initialized at 1e-4, and a dropout probability
of 0.1 after the residual layer. Our model is trained
on a machine with single NVIDIA 1080-Ti GPU.
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Task Model Effect Attribute Intention Average Caption
E2C-Completion

(Text-Only)
9ENC9DEC (Sap et al., 2018) 44.23 52.01 49.72 49.47 -
COMET (Bosselut et al., 2019) 54.98 56.28 66.32 59.22 -

V2C-Completion Att-Enc-Dec(Gao et al., 2017) 66.09 52.40 56.26 58.25 -
VCT-Completion 66.83 63.45 67.37 65.88 -

V2C-Generation Att-Enc-Dec(Gao et al., 2017) 55.93 74.87 65.54 64.78 74.67
VCT-Generation 62.99 73.54 66.74 67.76 73.17

Gold Annotations V2C Dataset 75.19 83.03 80.11 79.44 95.01

Table 3: Human evaluation scores for V2C. Captions are an input for the V2C-Completion task, and generated
for the V2C-Generation task. The best model is given in bold, while the overall best is underlined.

Baseline Model: We compare our method with
strong video captioning baseline models like,
S2VT (Venugopalan et al., 2015), “Attention-Enc-
Dec” (Gao et al., 2017) – LSTM based models
which reach competitive performing on MSR-VTT
dataset. and “Dense Captioning” (Zhou et al.,
2018), which is a transformer based video caption-
ing model. As “Dense Captioning” is proposed to
generate multiple continuous captions for a long
untrimmed videos, we modify this by removing
the temporal bounding boxes prediction module,
and produce two continuous captions (caption +
commonsense sentence) together without corre-
sponded starting and ending time. All baselines
are trained to predict commonsense descriptions
from video on the V2C dataset. We do not compare
with VideoBERT (Sun et al., 2019) which is trained
on a limited set of cooking videos and hence non-
transferable, and requires individual captions for
multiple segments of the video.

Metrics: We report both the performances eval-
uated by automatic scores and human evaluations
following the protocols from (Bosselut et al., 2019;
Sap et al., 2018). We evaluate our method us-
ing BLEU (n=1-4) (Papineni et al., 2002), Me-
teor (Banerjee and Lavie, 2005), Rouge (Lin, 2004),
and perplexity score of the generation on its cor-
pus. We further conduct human evaluations using
AMT workers, who are asked to identity whether
the generated commonsense justifiably completes
the events (V2C-completion). We follow the setup
in (Sap et al., 2018) and randomly sample 100
videos from test set and collect 10 generations for
each. To guarantee the objectiveness of the human
evaluations, we hire 5 workers for each sample,
yielding 30k ratings in total for each model.

4.1 Results
Natural Language Generation Metrics: We
show evaluation of the commonsense comple-

tion task in Table 2. Compared to the baseline
model, our method exhibits a consistent and over-
all improvement on almost all metrics. Our V2C-
Transformer significantly outperforms the LSTM
based model in (Gao et al., 2017) by 7.7% at BLEU-
4 for the intention prediction. Because the V2C-
Transformer and the LSTM model share a simi-
lar video encoder, our performance improvement
could be attributed to the use of self-attention mech-
anisms in the transformer block in decoding phase.
This observation is consistent with the conclusion
from (Bosselut et al., 2019), and yields further sup-
port to the transformer architecture being suited
for commonsense inference tasks. Moreover, when
compared with DenseCap which has a similar trans-
former architecture and parameters, our model ex-
hibits better evaluation scores, verifying it as a
strong baseline model for the V2C task.

Human Evaluation In Table 3, E2C (Event to
Commonsense) is the task of commonsense com-
pletion given only textual events (Sap et al., 2018;
Bosselut et al., 2019) as opposed to V2C which
uses both text and video. 9ENC9DEC (Sap et al.,
2018) is composed of nine GRU based encoder-
decoders as a baseline model for commonsense
completion on text, and COMET (Bosselut et al.,
2019) is a large-scale generative pre-trained trans-
former (GPT) model (Radford et al., 2018). We
would like to highlight that our transformer model
is light-weight with only half of the parameters in
GPT without any pre-training.

We evaluate our model on the tasks of caption
generation with human evaluations, and also com-
pare it with the gold annotations. Our gold anno-
tation for ground-truth captions (sourced from the
MSR-VTT dataset) points to the fact that a small
percentage of captions from MSR-VTT are not
relevant to the video, and this is amended by our
human workers.

For the V2C-Completion task, our V2C-
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Because she wants to serve healthy meals, , 

and she will have food ready to eat soon.  The person is seen as skilled 

with their hands.

Because she wants to express themselves,  the woman is singing a song and 

playing piano, she will enjoy playing piano.  The woman is artistic.
Intention

Effect Attribute

To know how to play soccer, a man is playing a soccer game, 

and he will cautiously dribble the ball.  The man is enthused.

Completion:

GT Caption:     A woman making fish shaped food with bean paste.

Intention

Effect Attribute

To catch a fish, a baby is talking about a fish in the ocean,     and he will know 

more about the ocean.      The person is seen as knowledgeable.

Generation:
Failure Example

Generation:

Generation:

Figure 4: Examples of outputs of our model for the V2C Completion and Generation tasks along with the ground-
truth (GT) caption. A failure example shown in the bottom red box.

Transformer model is substantially better (by
7.73%) than the LSTM-based model from (Gao
et al., 2017), and shows consistent lead on each
dimension. Thus, when the ground-truth caption
is given, our model is able to generate much more
relevant commonsense descriptions, thereby con-
solidating it’s ability of commonsense generation.

For the task of V2C-Generation, the differ-
ence between human scores for LSTM vs V2C-
Transformer is reduced, but our VTC outperforms
on average by 2.98%. This may be attributed to the
fact that the LSTM-based model is slightly better
at generating captions.

Generating Textual Stories with Commonsense
In order to generate story-like textual descriptions
that complement the factual captions, we addition-
ally train our model to exploit our diverse complete-
sentence annotations. Specifically, instead of pro-
ducing the commonsense knowledge given the
videos and captions, we finetune our pre-trained
V2C-Transformer model on predicting the human
rewritten texts, and generate complete story-like
captions. Since we do not have enough annota-
tions per sample to compute a fair BLEU score for
comparisons, we showcase some sample generated
descriptions for qualitative analysis (see Figure 4).
With that, we observe V2C-Transformer is able
to produce complete stories that contain simple,
while logically consistent storylines that comple-
ment both the visual content and the factual descrip-
tions. We believe that collecting a set of story-like
sentences will further enrich our models, and allow
us to generate much more contextual, creative, and

Who is fighting?     

What is the intention of the person on the left? 
What could happen to the person after this? 
What is the characteristic of the person?
Does the person want to protect his country?       

the soldier

to protect the country
gets injured
brave, powerful
Yes

Conventional Video QA

V2C - QA

Figure 5: Example questions from V2C-QA compared
with conventional video question answering.

natural commonsense descriptions from a video.

5 V2C-QA

Another way of generating commonsense descrip-
tions about the video is by asking pointed questions.
Consider the example in 1 where we ask the ques-
tion “What happens next to the runners”, about
the effect of the action “prepare” performed by the
agents “group of runners” observed in the video.
We propose a V2C-QA – an open-ended common-
sense video question-answering task, where we ask
questions about the intents, effects and attributes
of the agents in the video.
Dataset: We use the caption and commonsense
annotations in the V2C dataset to create question-
answer pairs for each video. We first extract the
action and subject from the caption using SpaCy
linguistic features (Honnibal and Johnson, 2015).
For each intention, attribute and effect for a video,
we use template-based generation to get 7 types
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Model top-1 top-3 top-5

p r p r p r
In

te
nt

io
n MSR-VTT QA 9.68 2.13 7.15 4.68 6.07 6.60

V2C-T 10.34 2.31 7.69 5.03 6.37 6.87
V2C-T + Captions 10.72 2.54 8.08 5.47 6.39 7.20
Pretrained V2C-T 10.77 2.69 8.01 5.58 6.71 7.88
Pretrained V2C-T + Cap. 11.04 2.68 7.96 5.70 6.63 7.79

E
ff

ec
t

MSR-VTT QA 19.89 5.02 8.04 5.91 5.30 6.49
V2C-T 20.95 5.43 8.65 6.57 5.65 7.06
V2C-T + Captions 20.95 5.32 8.50 6.48 5.76 7.26
Pretrained V2C-T 20.95 5.32 8.63 6.55 5.82 7.49
Pretrained V2C-T + Cap. 21.12 5.60 8.70 6.89 5.83 7.68

A
tt

ri
bu

te

MSR-VTT QA 46.10 37.22 16.02 49.45 7.49 41.03
V2C-T 59.52 48.30 22.39 51.40 13.97 52.57
V2C-T + Captions 59.74 48.22 23.12 52.44 14.64 54.35
Pretrained V2C-T 60.72 49.00 23.18 52.73 14.98 55.40
Pretrained V2C-T +Cap. 59.57 48.24 23.10 52.54 14.94 54.91

Text-Only Baseline 12.36 11.70 13.84 12.35 14.77 14.10

Table 4: Precision (p) and Recall (r) for V2C-QA for
each type of question.

of questions – yielding 21 questions per sample,
including negative questions as in Gokhale et al.
(2020). In total, we have 1,250 training videos and
250 test videos, and a total of 37k questions. We
have a set of 5,555 unique answers for our ques-
tions. Each question can have multiple possible
true answers as shown in the example in Figure 5.
The V2C-QA task asks questions that require com-
monsense reasoning about internal mental states,
motivations, and latent aspects of agents in the
video as opposed to the conventional video-QA
questions about visible objects and actions.

Models: We utilize our V2C-Encoder followed
by an open-ended answering module. We jointly
predict the type of the question and combine it
with the V2C encoding using a feed-forward net-
work. For textual features, we use embeddings
from BERT-base (Devlin et al., 2019). Our models
are trained on the open-ended QA task and set-
up as a multi-label classification task similar to
VQA (Antol et al., 2015), with an answering mod-
ule design inspired by LXMERT (Tan and Bansal,
2019). Our loss function includes the classification
loss for answering, the attention loss for question-
type, and a label-ranking loss.

Results: MSR-VTT QA (Xu et al., 2017) is as
a good baseline since it is trained on a conven-
tional videoQA task on the MSR-VTT videos, and
only takes video and query as input, unlike recent
video understanding models (Lei et al., 2018) that
take additional supervision, such as subtitles. How-
ever this model is trained for a multiple-choice QA

scheme, so we modify it with our open-ended an-
swering module. We compare our models when
we use our encoder pretrained on the V2C caption
generation task, and then finetune it on the V2C-
QA task. We also train models with ground-truth
factual captions as input. Our results are shown in
Table 4, where we evaluate on prediction of top-
k (1,3,5) answers, and report precision and recall.
Our encoder pre-trained on the V2C task outper-
forms all other models. Attribute-related questions
are easier to answer, while the models struggle the
most for questions about intention. Captions help
in questions about effects. The overall text-only
baseline shows an insignificant bias between the
question and answer-options.

6 Related Work

Video Captioning: Captioning is crucial for un-
derstanding visuals; however it is typically limited
to describing observable objects and events (Yang
et al., 2011; Thomason et al., 2014; Gan et al.,
2017)), or for generating paragraphs or multi-
sentence captions about the image or video (Krause
et al., 2017; Krishna et al., 2017). However, for
detailed video understanding, one needs to obtain
descriptions that go beyond observable visual enti-
ties and use background knowledge and common-
sense to reason about objects and actions. Work
for inferring motivations of human actions in static
images by incorporating commonsense knowledge
are reflected in Pirsiavash et al. (2014); Vondrick
et al. (2016). Commonsense caption generation
has been approached on abstract scenes and clip-
art images in Vedantam et al. (2015). We present
the first generative model for commonsense video
captioning.
Video Question Answering: Since caption gener-
ation can only describe observable events, recent
work seeks to move closer to comprehension, by
learning to answer complex questions about videos.
However, the datasets used for Video QA (Yang
et al., 2003; Xu et al., 2016; Zhu et al., 2017) fo-
cus only on directly evident visual concepts and
construct the questions mostly about “where” and
“what” aspects. Question answering on movie
videos has been explored by Tapaswi et al. (2016)
who collect questions about “why” and “how” as-
pects. Recently Lei et al. (2018); Zadeh et al.
(2019) have propose video-based QA tasks with
open-ended high-order questions that need multi-
modal understanding, social intelligence modeling,
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and spatio-temporal reasoning. We introduce a
novel open-ended video question answering task
in this paper, where the questions are about three
aspects of commonsense human behavior.
Visual Reasoning: Aspects of visual reasoning
have been explored by Yatskar et al. (2016) as a
situation recognition task on single images, and
in Visual Madlibs (Yu et al., 2015) as a “fill-in-
the-blanks” task for single-image captioning that
contains some categories which require reasoning
about internal mental states and future events. Kim
et al. (2018) provide textual explanations for ac-
tions in a self-driving scene. Zellers et al. (2019)
propose a visual question answering task that re-
quires commonsense reasoning to answer a ques-
tion and to provide a rationale behind the answer.
Spatial and compositional reasoning is required
to answer questions about synthetic images in
CLEVR (Johnson et al., 2017). Critical aspects
of visual reasoning also include the model’s ability
to conduct object grounding by natural language
descriptions (Rohrbach et al., 2016; Fang et al.,
2018, 2019). Another aspect of visual reasoning
is the ability predict a sequence of actions (pro-
cedure planning), or to reason about intermediate
video frames (walkthrough planning) between two
frames, explored in Gokhale et al. (2019); Chang
et al. (2020).
Textual Commonsense: Commonsense-based
question answering is an area of active research
with several datasets and challenges requiring rea-
soning about conceptual commonsense (Talmor
et al., 2019), physical commonsense (Bisk et al.,
2020), social commonsense (Sap et al., 2019),
and abductive commonsense (Bhagavatula et al.,
2020). On the other hand, challenges such as
ProPara (Mishra et al., 2018) and bAbI (Weston
et al., 2015) require tracking elements, actions, and
effects of actions. Commonsense-based text gener-
ation has recently been explored via the ATOMIC

dataset (Sap et al., 2018), a corpus of 877k textual
descriptions of inferential knowledge organized
as if-then relations. Bosselut et al. (2019) adopt
the ATOMIC dataset to learn a generative model
of commonsense knowledge. To the best of our
knowledge, ours is the first work on generating
commonsense descriptions from visual inputs.

7 Outlook

A video typically contains one or many objects
(sometimes performing actions) in different back-

grounds, scenes, or situations. Some objects may
be “passive” such as trees or buildings, while some
objects may be “active” such as people performing
actions like walking, singing, and driving. This
paper is focused on describing such active agents
in terms of their intentions, effects of their actions,
and attributes that characterize these agents.

We distinguish V2C from the traditional video
captioning task. Video captions describe observ-
able objects, background, and actions, while com-
monsense descriptions in our task seek to de-
scribe the unobservable intentions of the agent
(pre-conditions or mental conditions), effects of
the action (that happen in the future), and attributes
which characterize the agent. Thus commonsense
generation goes beyond the visible. Ours is the
first attempt at developing a generative video-based
commonsense model. We anticipate that our frame-
work can be utilized for many applications in video
understanding, comprehension, human-robot in-
teraction, and learning commonsense in a multi-
modal setting.

8 Conclusion

In this paper, we explore a novel and challenging
task to generate video descriptions with rich com-
monsense descriptions that complement the factual
captions. We expand an existing video caption-
ing dataset for the V2C task through automated
retrieval from a textual commonsense corpus fol-
lowed by human labeling, and present a novel V2C-
Transformer model to serve as a strong baseline
method for the V2C task. Our evaluation verifies
the effectiveness of our method, while also indi-
cating a scope for further study, enhancement, and
extensions in the future. Our experiments on using
the V2C-Transformer as a component for the V2C-
QA task show that the model has transfer learning
capabilities that can be applied to other vision-and-
language tasks such as question-answering, that
require commonsense reasoning.
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Appendix

In this appendix, we provide the the following sup-
plementary information:
• Additional details about our dataset creation pro-

cess, including statistics and analysis for V2C
and V2C-QA datasets,
• Examples of commonsense descriptions gener-

ated by our V2C-Transformer model,
• Details about our human evaluation interface,

protocol, and metrics.

A V2C Dataset Construction

Our dataset creation methodology is a three-step
procedure as shown in Figure 9. In the first step,
we use the caption to query ATOMIC (Sap et al.,
2018) and retrieve the top-3 intentions, effects, and
attributes. These are re-ranked by a BERT based
model in the second step. The final step involves
humans in the annotation process. We ask human
annotators to select the most relevant descriptions,
and to provide additional descriptions in their own
words. The annotators also convert a subset of our
dataset into complete sentence descriptions.

A.1 Querying from ATOMIC

For every video-caption pair in the MSR-VTT

dataset, we select 3 most similar events from
ATOMIC. These are then used to retrieve textual
descriptions of three types – intentions, effects, at-
tributes from ATOMIC.

A.2 BERT Ranking Model

We implement a Bidirectional Encoder Represen-
tations from Transformers (BERT) model (Devlin
et al., 2019) as a ranking model to rank and re-
trieve top-3 most plausible commonsense aspects
to complement the ground truth caption. This is
done by treating the ranking task as a binarized
next sentence prediction (NSP) task, trained on the
ATOMIC (Sap et al., 2018) dataset. When choosing
the sentences A and B for each training pair, for
50% of the training pairs we choose the actual next
sentence that follows A, and a random sentence
from the ATOMIC as a negative sentence. This
setting is consistent with the NSP task in (Devlin
et al., 2019). We train our model in ATOMIC, and
use it to expand video captions from MSR-VTT (Xu
et al., 2016). Our BERT model consists of 12 trans-
former blocks, 12 attention heads, and 768 hidden
dimensions (110M parameters in total). In total,

EventIntention [SEP]

[SEP] To develop a relationship PersonX puts PersonX’s trust in PersonY

Figure 6: Next sentence prediction task in Bert model.
A and B sentences are separated by token [SEP].

Commonsense Type Accuracy (%)
Intention 84.87

Effect 86.53
Attribute 87.23

Average 86.21

Table 5: Accuracy of our BERT model for next sen-
tence prediction on the ATOMIC test dataset split

we have 115,312 pairs for training/testing. We eval-
uate our model using accuracy of the prediction in
the test set of ATOMIC which is 30% of the entire
set. BERT can achieve 86.21% accuracy in NSP
task on average as shown in Table 5. In addition,
we also conduct human evaluations to measure the
overall quality of the expanded V2C dataset (see
“gold annotations” in Table. 3, main paper).

A.3 Human Labeling

With querying from ATOMIC and BERT re-
ranking, we obtain commonsense descriptions that
are relevant to the caption. However, we want to
make sure that these descriptions are also relevant
to the video. Thus we utilize human workers from
Amazon Mechanical Turk (AMT) for selecting the
most relevant commonsense descriptions. Our an-
notation interface is shown in Figure 10. We ask
the annotators to select descriptions that are most
relevant to the video and to the caption, and also
encourage them to add their own commonsense de-
scriptions. This makes our dataset more natural and
human-like. This also allows us to remove noisy
annotations that may be produced due to text-only
ATOMIC querying. We show additional samples
from our V2C dataset in Figure. 11, word cloud in
Figure. 7 and word frequency in 8.

A.4 Benefits of the Three-Step Pipeline

Since our videos are annotated with captions, we
use the captions to retrieve commonsense descrip-
tions from ATOMIC. The ATOMIC dataset has
comprehensive annotations for human activities,
actions, and events and as such covers most of
the events in MSR-VTT. Thus using these two
datasets together is a natural step for creating our
V2C dataset.
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Figure 7: Word cloud figure of the intention common-
sense annotations from our V2C dataset.

This purely caption-based retrieval unfortunately
does not incorporate the latent aspects of the video,
but only those from the caption. Moreover, since
the video is not used for retrieving these, the com-
monsense annotations may be out-of-context. Thus,
we bring in human annotators to watch the video,
read the caption, and then use the set of descriptions
from ATOMIC to select the relevant once and to
discard the irrelevant or out of context descriptions.
The human annotators then provide annotations
about intention, effect, and attribute in their own
words. The ATOMIC retrieved descriptions help
the human annotators to get an idea about the task
and also get a glimpse of the format of the desired
annotations. This significantly reduces the noise in
human annotations.

To guarantee and measure the overall quality of
our V2C dataset, we have conducted human evalu-
ations on the V2C annotations. Our results shows
that 86.29% of the

〈
video-caption-commonsense

〉
triples are labeled as reasonable samples (see “Gold
Annotations” in main paper, Table. 3), verifying
the quality of our dataset

B V2C-QA Dataset

For the V2C Question Answering task, we repur-
pose our V2C dataset and convert it to a question-
answering dataset. We choose a subset of 1500
videos: 1250 for training and 250 for testing, fol-
lowing the same train-test split as MSR-VTT. We
use SpaCy linguistic features (Honnibal and Mon-
tani, 2017) along with the LemmInflect library
(https://github.com/bjascob/LemmInflect) and template-
based generation to convert the captions, intentions,
effects, and attributes from V2C to create ques-
tions and ground-truth answers. Our templates are
lingustically diverse, natural, and grammatically
sound. We have 21 types of templates with each
template having numerous possibilities for combi-
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Figure 8: Top-100 most frequent words in our V2C
dataset (stop words are ignored).

nations of the slots in the template. Thus we get
21 types of questions (7 each for intention, effect,
and attribute) as shown in Table 6. Since our task
is open-ended question-answering, our questions
are annotated with all possible correct answers for
that question. To get answers for the “negative”
questions as shown in Table 6, we use the adver-
sarial matching strategy similar to (Zellers et al.,
2019), by using RoBERTa (Liu et al., 2019) simi-
larity. We will release our V2C-QA question and

https://github.com/bjascob/LemmInflect
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Figure 9: The data creation flow for V2C. We use the retrieved videos and captions from MSR-VTT and use
the BERT re-ranking module to obtain a list of top-3 intentions (I), effects (E), and attributes (A). These are
then further improved by human labeling. A subset of annotations is also converted to full sentences by human
annotators.

Figure 10: Our human labeling interface. We ask human workers to select relevant commonsense descriptions as
well provide additional texts in their own words

answer generation code publicly.

C Qualitative Generation Results

We show additional V2C-Completion samples by
our V2C-Transformer model in Table. 7.

D Human Evaluation

Human evaluation is one of the important part to
verify the performances of our model and the qual-
ity of the V2C dataset. In this section we describe
our setup for human evaluation of the captions and
commonsense descriptions in our dataset as well
as those generated by our models.

D.1 Amazon Mechanical Turk Interface

We conduct our human evaluations by crowdsourc-
ing ratings from workers on Amazon Mechanical
Turk (AMT). We do these human evaluations on the
same test set used for our automated metrics. We
show an example of our interface in Figure 12 and
13 which shows the screenshot of the rating task as

seen by the workers. The workers are given explicit
instructions about this rating task, and depending
on the task are asked to rate the commonsense de-
scriptions and the caption.

For the V2C-Completion task, the workers are
provided with the video and the ground-truth cap-
tion and asked to rate the only the generated
commonsense (intention, effect or attribute) on a
scale of 1 to 5. The workers are asked to pro-
vide this rating on the basis of whether the gener-
ated text is relevant to the video, i.e whether the
caption/commonsense can plausibly complete the
given event.

For the V2C-Generation task, the workers are
asked to rate the caption as well as the common-
sense texts with respect to the video. The workers
are also asked to conduct identical tasks for the
gold (ground-truth annotations) in our new V2C
dataset.
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Question Type Question Answer

Intention What might be the goal of the person? to record a music video
Intention (Negative) What could the person not want to achieve? to bake a cake
Intention (Action) What prompts the person to do the action? to express themselves
Intention (Action, Negative) What did not lead the person to act like that? to feed the dog
Intention (Why) Why might the person be doing the action? to entertain viewers
Intention (Yes-No) Does the person wish to express himself? Yes
Intention (Yes-No, Negative) Does the person want to not get recognition? No

Effect What will the person do after this? puts the video on YouTube
Effect (Negative) What does not happen as a result? the person gets sad
Effect (Action) What does the dancing end up in? becomes tired
Effect (Action, Negative) What will not happen due to the action? feels tense
Effect (How) How does the person feel after performing? feels accomplised
Effect (Yes-No) Could the person put it on YouTube as a result? Yes
Effect (Yes-No, Negative) Will the person not learn a new dance? No

Attribute What trait does the man possess? musical
Attribute (Negative) What attribute does not match with the person? angry
Attribute (How) How can the person be described? entertaining
Attribute (Action, How) How can the dancing person be characterized? rhythmic
Attribute (Yes-No, Action) Is the person who is singing smiling? Yes
Attribute (Yes-No) Is the person entertaining? Yes
Attribute (Yes-No, Negative) Is the person not tense? Yes

Table 6: Examples of open-ended V2C-QA samples

D.2 Scheme for Validity

Our ratings are measured on a scale of 1 to 5. An-
notations which receive a score greater than 3 are
considered “valid”, so as to be consistent with the
binary ratings used by (Bosselut et al., 2019) for
their experiments. We then compute average valid-
ity scores for each commonsense aspect: intention,
attribute and effect.

D.3 Statistics of Human Evaluations

In order to further analyze the human evalua-
tions on our generated outputs, we use three met-
rics - standard deviation of the ratings, inter-rater
agreement score (IRAS) and a smooth version of
IRAS. Standard Deviation was calculated per sam-
ple based on the evaluations provided by multiple
workers on each sample. We do so to evaluate how
consistent our AMT workers are and how much
they deviate or agree with each other. We use three
different metrics so as to analyze our data and gen-
erations through multiple lenses, to be certain that
the outputs and annotations are high-quality.

D.3.1 Inter-Rater Agreement Score
Inter-Rater Agreement Score is computed as the
average of the percentage of raters for each sample
that agree with the majority opinion. Let m be the
size of the test-set, and n be the number of rating.
LetRj = {r1, . . . , rn} be the set of ratings for test
sample j. Then the mode rmode is defined as the
most frequently occurring (majority) rating in the
set of ratingsRj , i.e. rmode = MODE(Rj).

Inter-Rater Agreement Score IRASagree is the
average percentage of raters that agree with the
majority opinion rmode:

IRAS = 100×
m∑
j=1

∑n
i=1 I(ri = rmode)

n×m
, (5)

where I is the indicator function.

D.3.2 Smooth Inter-Rater Agreement Score
While IRAS acts as a good metric to find out how
our dataset fares in terms of rater agreement, it
suffers from a flaw. Irrespective of the value of
ratings, the indicator function I returns 0 for the
tuple of ratings (1, 5) as well as (4, 5), although the
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Intention Caption Effect Attribute
to entertain people a band is performing for a crowd gets applause acting
to try out PersonY’s new
car

a man checks out detail on a car gets a speeding ticket helpful

to learn about current
events

a complex news host gives an update
on rappers.

gets informed about cur-
rent political events

talkative

to be in a good mood a group of people trying to perform an
exorcism on a girl

gets applause fun

to show his knowledge-
able

there is an old man is answering to
somebody questions

gets another question sporty

to score a point a man is shooting a basketball ground gets exercise helpful
to share their message a man giving a speech to important

people
gets applause orator

to be safe from anything
that lurks in the dark

a group of people are being chased by
crocodiles

gets tired from taking
pictures

scared

to be informed about the
world

a girl is describing about hot news learns about whats hap-
pening worldwide

gossipy

to watch something inter-
esting

a children s television show clip smiles at the screen entertained

to enjoy the evening with
the concert band

a band composed of older gentlemen
are playing blue grass music on a small
stage and people are dancing along to
the music swing-style

gets tired form dancing fun

to be part of the team there is a woman playing badminton
in a court

gets tired after exercise athletic

to try out person ys new
car

a boy explaining the features of a car they check car websites
online to look at deals

helpful

to escape reality a man explaining a video game takes the video game
home

gamer

to cook something there is a man in black cutting the
green leaves on the desk

gets clean dishes hungry

Table 7: Illustrative samples generated by our V2C-Transformer model on V2C-completion task.

Type Std. Dev (%) ↓ IRAS(%) ↑ smooth-IRAS (%) ↑
ATTENCDEC V2C-Transformer ATTENCDEC V2C-Transformer ATTENCDEC V2C-Transformer

V2C-Completion
Intention 17.99 15.02 56.02 59.80 69.43 73.36
Effect 19.63 18.39 58.03 56.76 69.28 69.47
Attribute 10.54 9.74 69.06 71.28 80.24 81.83
Average 16.05 14.38 61.04 62.61 72.98 74.89

V2C-Generation
Intention 17.60 16.27 57.84 58.47 70.66 72.10
Effect 18.54 17.56 56.69 57.40 69.54 70.21
Attribute 15.42 13.16 59.80 62.25 73.51 76.12
Average 17.19 15.66 58.11 59.37 71.24 72.81

Table 8: A comparison of the statistics of human evaluation scores for both tasks using the baseline (ATTENCDEC
model vs. our model (V2C-Transformer)

ratings of 4 and 5 are close to each other but 1 and
5 are opposite. So to avoid this, we replace the
indicator function with a smooth exponential term.
The smooth inter-rater agreement score is given by:

IRASsmooth = 100×
m∑
j=1

∑n
i=1

(
1
2

)|ri−rmode|

n×m
.

(6)

D.3.3 Results
Table 8 shows our analysis in terms of the three
metrics described above. Our V2C-Transformer
architecture consistently outperforms the baseline
model ATTENCDEC (Gao et al., 2017) in all three
metrics for each type of commonsense. This means
that raters are more consistent with their ratings (in
terms of deviation or agreement) for commonsense
descriptions generated by our model.
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Caption A	guy	sings	a	song	in	a	music	video

The	person	wants: As	an	effect,	the	person: The	person	is:

to	express	themselves	
to	sing	a	song

to	make	life	more	pleasant

put	it	on	YouTube	
learns	a	new	dance	
gets	into	their	rhythm

outgoing
enthusiastic
energetic

Caption Girls	trying	on	new	sports	bra.

to	show	off	at	the	gym
to	acquire	new	footwear
to	wear	appealing	clothes

becomes	obsessed
gets	their	picture	taken

grabs	attention	from	people

stylish
trendy

fashionable

Caption Groups	of	runner	get	prepared	to	run	a	race.

to	win	the	race	
to	earn	a	medal

to	win	the	competition

runs	a	race	
is	congratulated	at	the	finish	line	

focuses	on	the	race

athletic
competitive
determined

Caption President	Obama	calls	a	team	to	congratulate	them.

to	show	appreciation	
to	be	accommodating	

to	talk	to	them

sweats	from	nervousness	
shares	information	
communicates

empathetic
talkative

conversational

Rewritten Story:
Because	he	wants	to	express	himself,	a	guy	sings	a	song	in	a	music	video,	and	he	

will	upload	it	to	YouTube	soon.	He	is	quite	an	enthusiastic	guy.

Rewritten Story:
In	order	to	purchase	new	sportswear,	girls	trying	on	new	sports	bra,	and	they

may	grab	attention	from	people	later.	They	are	all	stylish	person.

Rewritten Story:
Since	the	athletes	are	trying	to	win	the	race,	groups	of	runner	get	prepared	to	run	a	race,	and	they	

will	run	and	get	congratulated	at	the	finish	line	soon.	They	are	athletic.

Rewritten Story:
To	show	his	appreciation	to	the	winners,	President	Obama	calls	a	team	to	congratulate	them,	the	girls	

will	got	sweats	because	of	that.	The	Obama	is	so	talkative.

Caption A	group	of	males	speaking	to	each	other	at	a	meeting.

to	have	a	conversation	
convey	information

to	give	speech

gives	a	rebuttal	
gets	to	meet	the	host	
loses	their	voice	due	to	
loud	talking/yelling

extroverted
polite
speaker

Rewritten Story:
In	order	to	convey	with	each	other	the	information,	a	groups	of	males	speaking	to	each	other	at	a	

meeting,	they	will	get	into	a	rebuttal	soon.	The	people	have	the	attribute	to	be	extroverted.

Caption A	man	drives	a	vehicle	through	the	countryside.

to	get	to	her	destination	
to	get	somewhere	

to	drive	fast

travels	to	a	different	city	
arrives	at	their	destination	

enjoy	driving

traveling
a	good	driver

speedy

Caption A	woman	in	a	business	suit	looking	at	a	computer	monitor.

to	get	the	computer	working	
set	up	system	

to	clean	the	viruses	from
his	computer

turns	off	the	computer	
boots	up	the	computer	
spends	money	on	a	new

computer

busy
smart

informative

Rewritten Story:
To	get	to	his	destination	as	soon	as	possible,	a	man	drives	a	vehicle	through	the	countryside,	he	may	

soon	arrives	at	his	destination.	The	man	is	a	good	driver.

Rewritten Story:
Because	the	computer	is	not	working	and	the	woman	is	trying	to	fix	it,	a	woman	in	a	business	suit	

looking	at	a	computer	monitor,	she	will	boots	the	computer	first	soon.	She	is	a	very	informative	person.

Figure 11: Qualitative examples of our V2C dataset.
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Figure 12: Snapshot of our AMT human evaluation interface for V2C-completion task.
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Figure 13: Snapshot of our AMT human evaluation interface for V2C-generation task.
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Figure 14: V2C-Completion task using the ATTENCDEC model.

Figure 15: V2C-Completion task using our V2C-Transformer model.

Figure 16: V2C-Completion task using the ATTENCDEC model.

Figure 17: V2C-Generation task using our V2C-Transformer model.

Figure 18: Standard deviation histograms of human ratings across models and split (From left to right: Intention,
Attribute, Effect). X-axis denotes standard deviation value and Y-axis denotes percentage of test set samples.


