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Abstract
NLU models often exploit biases to achieve
high dataset-specific performance without
properly learning the intended task. Recently
proposed debiasing methods are shown to be
effective in mitigating this tendency. However,
these methods rely on a major assumption that
the types of bias should be known a-priori,
which limits their application to many NLU
tasks and datasets. In this work, we present
the first step to bridge this gap by introducing
a self-debiasing framework that prevents mod-
els from mainly utilizing biases without know-
ing them in advance. The proposed framework
is general and complementary to the existing
debiasing methods. We show that it allows
these existing methods to retain the improve-
ment on the challenge datasets (i.e., sets of ex-
amples designed to expose models’ reliance
on biases) without specifically targeting cer-
tain biases. Furthermore, the evaluation sug-
gests that applying the framework results in
improved overall robustness.1

1 Introduction

Neural models often achieve impressive perfor-
mance on many natural language understanding
tasks (NLU) by leveraging biased features, i.e.,
superficial surface patterns that are spuriously as-
sociated with the target labels (Gururangan et al.,
2018; McCoy et al., 2019b).2 Recently proposed
debiasing methods are effective in mitigating the
impact of this tendency, and the resulting mod-
els are shown to perform better beyond training
distribution. They improved the performance on
challenge test sets that are designed such that rely-
ing on the spurious association leads to incorrect
predictions.

1The code is available at https://github.com/
UKPLab/emnlp2020-debiasing-unknown

2E.g., in several textual entailment datasets, negation
words such as “never” or “nobody” are highly associated with
the contradiction label.

Prevailing debiasing methods, e.g., example
reweighting (Schuster et al., 2019), confidence reg-
ularization (Utama et al., 2020), and model ensem-
bling (He et al., 2019; Clark et al., 2019; Mahabadi
et al., 2020), are agnostic to model’s architecture
as they operate by adjusting the training loss to ac-
count for biases. Namely, they first identify biased
examples in the training data and down-weight their
importance in the training loss so that models focus
on learning from harder examples.3

While promising, these model agnostic methods
rely on the assumption that the specific types of
biased features (e.g., lexical overlap) are known
a-priori. This assumption, however, is a limitation
in various NLU tasks or datasets because it de-
pends on researchers’ intuition and task-specific in-
sights to manually characterize the spurious biases,
which may range from simple word/n-grams co-
occurrence (Gururangan et al., 2018; Poliak et al.,
2018; Tsuchiya, 2018; Schuster et al., 2019) to
more complex stylistic and lexico-syntactic pat-
terns (Zellers et al., 2019; Snow et al., 2006; Van-
derwende and Dolan, 2006). The existing datasets
or the newly created ones (Zellers et al., 2019; Sak-
aguchi et al., 2020; Nie et al., 2019b) are, therefore,
still very likely to contain biased patterns that re-
main unknown without an in-depth analysis of each
individual dataset (Sharma et al., 2018).

In this paper, we propose a new strategy to en-
able the existing debiasing methods to be appli-
cable in settings where there is minimum prior
information about the biases. Specifically, mod-
els should automatically identify potentially biased
examples without being pinpointed at a specific
bias in advance. Our work makes the following
novel contributions in this direction of automatic
bias mitigation.

First, we analyze the learning dynamics of a
3We refer to biased examples as examples that can be

solved using only biased features.

https://www.ukp.tu-darmstadt.de
https://github.com/UKPLab/emnlp2020-debiasing-unknown
https://github.com/UKPLab/emnlp2020-debiasing-unknown
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large pre-trained model such as BERT (Devlin
et al., 2019) on a dataset injected with a syn-
thetic and controllable bias. We show that, in very
small data settings, models exhibit a distinctive
response to synthetically biased examples, where
they rapidly increase the accuracy (→ 100%) on bi-
ased test set while performing poorly on other sets,
indicating that they are mainly relying on biases.

Second, we present a self-debiasing framework
within which two models of the same architecture
are pipelined to address the unknown biases. Using
the insight from the synthetic dataset analysis, we
train the first model to be a shallow model that is
effective in automatically identifying potentially bi-
ased examples. The shallow model is then used to
train the main model through the existing debiasing
methods, which work by down-weighting the po-
tentially biased examples. These methods present
a caveat in that they may lose useful training sig-
nals from the down-weighted training examples.
To account for this, we also propose an anneal-
ing mechanism which helps in retaining models’
in-distribution performance (i.e., evaluation on the
test split of the original dataset).

Third, we experiment on three NLU tasks and
evaluate the models on their existing challenge
datasets. We show that models obtained through
our self-debiasing framework gain equally high im-
provement compared to models that are debiased
using specific prior knowledge. Furthermore, our
cross-datasets evaluation suggests that our general
framework that does not target only a particular
type of bias results in better overall robustness.

Terminology This work relates to the growing
number of research that addresses the effect of
dataset biases on the resulting models. Most re-
search aims to mitigate different types of bias on
varying parts of the training pipeline (e.g., dataset
collection or modeling). Without a shared defini-
tion and common terminology, it is quite often that
the term “bias” discussed in one paper refers to
a different kind of bias mentioned in the others.
Following the definition established in the recent
survey paper by Shah et al. (2020), the dataset bias
that we address in this work falls into the category
of label bias. This bias emerges when the condi-
tional distribution of the target label given certain
features in the training data diverges substantially
at test time. These features that are associated with
the label bias may differ from one classification set-
ting to the others, and although they are predictive,

MNLI synthetic:
premise: What’s truly striking, though, is that

Jobs has never really let this idea go.

orig. hypo.: Jobs never held onto an idea for long.

biased: 0 Jobs never held onto an idea for long.

anti-biased: 1 Jobs never held onto an idea for long.

label: 0 (contradiction)

Figure 1: Synthetic bias datasets are created by ap-
pending an artificial feature to the input text that al-
lows models to use it as a shortcut to the target la-
bel. For each example in MNLI, a number-coded la-
bel (contradiction: 0 , entailment: 1 , neutral:
2 ) is appended to the hypothesis sentences.

relying on them for prediction may be harmful to
fairness (Elazar and Goldberg, 2018) or generaliza-
tion (McCoy et al., 2019b). The instances of these
features may include protected socio-demographic
attributes (gender, age, etc.) in automatic hiring
decision systems; or surface-level patterns (nega-
tion words, lexical overlap, etc.) in NLU tasks.
Further, we consider the label bias to be unknown
when the information about the characteristics of
its associated features is not precise enough for the
existing debiasing strategies to identify potentially
biased examples.

2 Motivation and Analysis

Debiasing NLU models Recent NLU tasks are
commonly formulated as multi-class classification
problems (Wang et al., 2018), in which the goal is
to predict the semantic relationship label y ∈ Y
given an input sentence pairs x ∈ X . For each ex-
ample x, let b(x) be the biased features that happen
to be predictive of label y in a specific dataset. The
aim of a debiasing method for an NLU task is to
learn a debiased classifier fd that does not mainly
use b(x) when computing p(y|x).

Model-agnostic debiasing methods (e.g.,
product-of-expert (Clark et al., 2019)) achieve this
by reducing the importance of biased examples
in the learning objective. To identify whether an
example is biased, they employ a shallow model
fb, a simple model trained to directly compute
p(y|b(x)), where the features b(x) are hand-crafted
based on the task-specific knowledge of the biases.
However, obtaining the prior information to design
b(x) requires a dataset-specific analysis (Sharma
et al., 2018). Given the ever-growing number of
new datasets, it would be a time-consuming and



7599

48K 400K 608K 796K11K
0.0

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

MNLI synthetic-0.9

dev-m
dev-m biased
dev-m anti-biased

48K 400K 608K 796K11K
#-examples

MNLI synthetic-0.8

dev-m
dev-m biased
dev-m anti-biased

48K 400K 608K 796K11K

MNLI synthetic-0.7

dev-m
dev-m biased
dev-m anti-biased

48K 400K 608K 796K11K

MNLI synthetic-0.6

dev-m
dev-m biased
dev-m anti-biased

Figure 2: The learning trajectory of a BERT model on MNLI datasets that are synthetically biased with different
proportions: 0.9, 0.8, 0.7, and 0.6. All settings show models’ tendency to rely on biases after seeing only a small
number of training examples (accuracy goes up rapidly on “biased” while goes down on “anti-biased” after less
than 10K training steps).
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Figure 3: Histogram of probabilities assigned by synthetic MNLI models to their predicted labels. Top: model
trained on 5K examples for 1 epoch. Bottom: model trained on 2K for 3 epochs. Blue areas indicate the proportion
of the correct predictions within each bin.

costly process to identify biases before applying
the debiasing methods.

In this work, we propose an alternative strat-
egy to automatically obtain fb to enable existing
debiasing methods to work with no precise prior
knowledge. This strategy assumes a connection be-
tween large pre-trained models’ reliance on biases
with their tendency to operate as a rapid surface
learner, i.e., they tend to quickly overfit to surface
form information especially when they are fine-
tuned in a small training data setting (Zellers et al.,
2019). This tendency of deep neural network to
exploit simple patterns in the early stage of the
training is also well-observed in other domains of
artificial intelligence (Arpit et al., 2017; Liu et al.,
2020). Since biases are commonly characterized
as simple surface patterns, we expect that models’
rapid performance gain is mostly attributed to their
reliance on biases. Namely, they are likely to oper-
ate similarly as fb after they are exposed to only a
small number of training instances, i.e., achieving
high accuracy on the biased examples while still
performing poorly on the rest of the dataset.

Synthetic bias We investigate this assumption by
analyzing the comparison between models’ perfor-
mance trajectory on biased and anti-biased (“coun-

terexamples” to the biased shortcuts) test sets as
more examples are seen during the training. Our
goal is to obtain a fair comparison without the
confounds that may result in performance differ-
ences on these two sets. Specifically, the exam-
ples from the two sets should be similar except for
the presence of a feature that is biased in one set
and anti-biased in the other. For this reason, we
construct a synthetically biased data based on the
MNLI dataset (Williams et al., 2018) using a pro-
cedure illustrated in Figure 1. A synthetic bias is
injected by appending an artificial feature to 30%
of the original examples. We simulate the presence
of bias by controlling m portion of these manipu-
lated examples such that their artificial feature is
associated with the ground truth label (“biased”),
whereas, in the remaining (1−m), the feature is
disassociated with the label (“anti-biased”).4 Us-
ing a similar injection procedure we can produce
both fully biased and anti-biased test sets in which
100% of the examples contain the synthetic fea-
tures. Models that blindly predict based on the
artificial feature are guaranteed to achieve 0% ac-

4The remaining 70% of the dataset remain the same. The
biased and anti-biased examples refer to the fraction within
the other 30% that are injected with the artificial feature.
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curacy on the anti-biased test.

Model’s performance trajectory We finetune
a bert-base-uncased model (Wolf et al.,
2019) on the whole MNLI datasets that are par-
tially biased with different proportions (m =
{0.9, 0.8, 0.7, 0.6}). We evaluate each model on
the original as well as the two fully biased and anti-
biased test sets. Figure 2 shows the performance
trajectory in all settings. As expected, the models
show the tendency of relying on biases after only
seeing a small fraction of the dataset. Specifically,
at an early point during training, models achieve
100% accuracy on the biased test and drop to al-
most 0% on the anti-biased test. This behavior is
more apparent as the proportion of biased examples
is increased by adjusting m from 0.6 to 0.9.

Training a shallow model The analysis suggests
that we can obtain a substitute fb by taking a check-
point of the main model early in the training, i.e.,
when the model has only seen a small portion of
the training data. However, we observe that the
resulting model makes predictions with rather low
confidence, i.e., assigns a low probability to the pre-
dicted label. As shown in Figure 3 (top), most pre-
dictions fall in the 0.4 probability bin, only slightly
higher than a uniform probability (0.3). We further
find that by training the model for multiple epochs,
we can obtain a confident fb that overfits biased
features from a smaller sample size (Figure 3, bot-
tom). We show in Section 3 that overconfident fb
is particularly important to better identify biased
examples.

3 Self-debiasing Framework

We propose a self-debiasing framework that en-
ables existing debiasing methods to work with-
out requiring a precise dataset-specific knowledge
about the biases’ characteristics. Our framework
consists of two stages: (1) automatically identify-
ing biased examples using a shallow model; and
(2) using this information to train the main model
through the existing debiasing methods, which are
augmented with our proposed annealing mecha-
nism.

3.1 Biased examples identification

First, we train a shallow model fb, which approxi-
mates the behavior of a simple hand-crafted model
that is commonly used by the existing debiasing
methods to identify biased examples. As men-

tioned in Section 2, we obtain fb for each task
by training a copy of the main model on a small
random subset of the dataset for several epochs.
The model fb is then used to make predictions on
the remaining unseen training examples. Given a
training example {x(i), y(i)}, we denote the output
of the shallow model as fb(x(i)) = p

(i)
b .

Probabilities pb are assigned to each training
instance to indicate how likely that it contains bi-
ases. Specifically, the presence of biases can be es-
timated using the scalar probability value of p(i)b on
the correct label, which we denote as p(i,c)b , where
c is the index of the correct label. We can interpret
p
(i,c)
b by the following: when the model predicts an

example x(i) correctly with high confidence, i.e.,
p
(i,c)
b → 1, x(i) is potentially biased. Conversely,

when the model makes an overconfident error, i.e.,
p
(i,c)
b → 0, x(i) is likely to be a harder example

from which models should focus on learning.

3.2 Debiased training objective
We use the obtained pb to train the main model fd
parameterized by θd. Specifically, pb is utilized
by the existing model-agnostic debiasing methods
to down-weight the importance of biased exam-
ples in the training objective. In the following, we
describe how the three recent model-agnostic de-
biasing methods (example reweighting (Schuster
et al., 2019), product-of-expert (He et al., 2019;
Clark et al., 2019; Mahabadi et al., 2020), and con-
fidence regularization (Utama et al., 2020)) operate
within our framework:

Example reweighting This method adjusts the
importance of a training instance by directly as-
signing a scalar weight that indicates whether the
instance exhibits a bias. Following Clark et al.
(2019), this weight scalar is computed as 1− p(i,c)b .
The individual loss term is thus defined as:

L(θd) = −(1− p
(i,c)
b )y(i) · log pd

Where pd is the softmax output of fd. This formu-
lation means that the contribution of an example to
the overall loss is steadily decreased as the shallow
model assigns a higher probability to the correct
label (i.e., more confident prediction).

Product-of-expert In this method, the main
model fd is trained in an ensemble with the shallow
model fb, by combining their softmax outputs. The
ensemble loss on each example is defined as:

L(θd) = −y(i) · log softmax(log pd + log pb)
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During the training, we only optimize the parame-
ters of fd while keeping the parameters of fb fixed.
At test time, we use only the prediction of fd.

Confidence regularization This method works
by regularizing model confidence on the examples
that are likely to be biased. Utama et al. (2020)
use a self-distillation training objective (Furlanello
et al., 2018; Hinton et al., 2015), in which the super-
vision by the teacher model is scaled down using
the output of the shallow model. The loss on each
individual example is defined as a cross entropy
between pd and the scaled teacher output:

L(θd) = −S(pt, p
(i,c)
b ) · log pd

Where ft is the teacher model (parameterized iden-
tically to fd) that is trained using a standard cross
entropy loss on the full dataset, and ft(x) = pt.
This “soft” label supervision provided by the scaled
teacher output discourages models to make over-
confident predictions on examples containing bi-
ased features.

3.3 Annealing mechanism

Our shallow model fb is likely to capture multi-
ple types of bias, leading to more examples be-
ing down-weighted in the debiased training ob-
jectives. As a result, the effective training data
size is reduced even more, which leads to a sub-
stantial in-distribution performance drop in several
debiasing methods (He et al., 2019; Clark et al.,
2019). To mitigate this, we propose an anneal-
ing mechanism that allows the model to gradually
learn from all examples, including ones that are
detected as biased. This is done by steadily low-
ering p(i,c)b as the training progresses toward the
end. At training step t, the probability vector p(i)b

is scaled down by re-normalizing all probability
values that have been raised to the power of αt:

p
(i,j)
b =

p
(i,j)αt

b∑K
k=1 p

(i,k)αt

b

, where K is the number of

labels and index j ∈ {1, ...,K}. The value of αt

is gradually decreased throughout the training us-
ing a linear schedule. Namely, we set the value
of αt to range from the maximum value 1 at the
start of the training to the minimum value a in the
end of the training: αt = 1 − t (1−a)T , where T is
the total number of training steps. In the extreme
case where a is set to 0, pb vectors are scaled down
closer to uniform distribution near the end of the
training. This results in a more equal importance

of all examples, which is equivalent to the standard
cross entropy loss.

We note that since this mechanism gradually
exposes models to potentially biased instances, it
presents the risk of model picking up biases and
adopting back the baseline behavior. However, our
results and analysis suggest that when the param-
eter a is set to a value close to 1, the annealing
mechanism can still provide an improvement on
the in-distribution data while retaining a reasonably
well performance on the challenge test sets.

4 Experimental Setup

4.1 Evaluation Tasks

We perform evaluations on three NLU tasks: natu-
ral language inference, fact verification, and para-
phrase identification. We simulate a setting where
we have not enough information about the biases
for training a debiased model, and thus biased ex-
amples should be identified automatically. There-
fore, we only use the existing challenge test set
for each examined task strictly for evaluation and
do not use the information about their correspond-
ing bias types during training. In the following,
we briefly discuss the datasets used for training
on each task as well as their corresponding chal-
lenge test sets to evaluate the impact of debiasing
methods:

Natural language inference We use the English
Multi-Genre Natural Language Inference (MNLI)
dataset (Williams et al., 2018) which consists of
392K pairs of premise and hypothesis sentences
annotated with their textual entailment information.
We test NLI models on lexical overlap bias using
HANS evaluation set (McCoy et al., 2019b). It
contains examples, in which premise and hypothe-
sis sentences that consist of the same set of words
may not hold an entailment relationship, e.g., “cat
caught a mouse” vs. “mouse caught a cat”. Since
word overlapping is biased towards entailment in
MNLI, models trained on this dataset often perform
close to a random baseline on HANS.

Paraphrase identification We experiment with
the Quora Question Pairs dataset.5 It consists of
362K questions pairs annotated as either duplicate
or non-duplicate. We perform an evaluation using
PAWS dataset (Zhang et al., 2019) to test whether

5The dataset is available at https://www.kaggle.
com/c/quora-question-pairs

https://www.kaggle.com/c/quora-question-pairs
https://www.kaggle.com/c/quora-question-pairs
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Method MNLI (Acc.) FEVER (Acc.) QQP (F1)
dev HANS ∆ dev symm. ∆ D dev ¬D dev D PAWS ∆ ¬D PAWS ∆

BERT-base 84.5 61.5 - 85.6 63.1 - 87.9 92.9 48.7 - 17.6 -

Reweighting known-bias 83.5‡ 69.2‡ +7.7 84.6♣ 66.5♣ +3.4 85.5 91.9 49.7 +1.0 51.2 +33.6
Reweighting self-debias 81.4 68.6 +7.1 87.2 65.6 +2.5 75.7 86.7 43.7 −5.0 69.9 +52.3

Reweighting ♠ self-debias 82.3 69.7 +8.2 87.1 65.5 +2.4 79.4 88.6 46.4 −2.3 61.8 +44.2

PoE known-bias 82.9‡ 67.9‡ +6.4 86.5† 66.2† +3.1 84.3 91.4 50.3 +1.6 61.2 +43.6
PoE self-debias 80.7 68.5 +7.0 85.4 65.3 +2.1 77.4 87.7 44.1 −4.6 69.4 +51.8

PoE ♠ self-debias 81.9 66.8 +5.3 85.9 65.8 +2.7 80.7 89.3 47.4 −1.3 59.8 +42.2

Conf-reg known-bias 84.5[ 69.1[ +7.6 86.4[ 66.2[ +3.1 85.0 91.3 49.0 +0.3 30.9 +13.3
Conf-reg self-debias 83.9 67.7 +6.2 87.9 66.1 +3.0 83.9 90.6 49.2 +0.5 33.1 +15.5

Conf-reg ♠ self-debias 84.3 67.1 +5.6 87.6 66.0 +2.9 85.0 91.3 48.8 +0.1 28.7 +11.1

Table 1: Models’ performance when evaluated on MNLI, Fever, QQP, and their corresponding challenge test sets.
The known-bias results for MNLI and FEVER are taken from Utama et al. (2020)([), Clark et al. (2019)(‡),
Mahabadi et al. (2020)(†), and Schuster et al. (2019)(♣). The results of the proposed framework are indicated by
self-debias. (♠) indicates the training with our proposed annealing mechanism. Boldface numbers indicate
the highest challenge test set improvement for each debiasing setup on a particular task.

the resulting models perform the task by relying on
lexical overlap biases.

Fact verification We run debiasing experiments
on the FEVER dataset (Thorne et al., 2018). It
contains pairs of claim and evidence sentences la-
beled as either support, refutes, and not-enough-
information. We evaluate on the FeverSymmetric
test set (Schuster et al., 2019), which is collected to
reduced claim-only biases (e.g., negative phrases
such as “refused to” or “did not” are associated
with the refutes label).

4.2 Main Model

We apply our self-debiasing framework on the
BERT model (Devlin et al., 2019), which performs
very well on the three considered tasks.6 It also
shows substantial improvements on the correspond-
ing challenge datasets when trained through the
existing debiasing methods (Clark et al., 2019; He
et al., 2019). For each examined debiasing method,
we show the comparison between the results when
it is applied within our framework and when it is
trained using prior knowledge to detect training
examples with a specific bias. For the second sce-
nario, MNLI and QQP models are debiased using a
lexical overlap bias prior, whereas FEVER model
is debiased using hand-crafted claim-only biased
features. We use the results reported in their corre-
sponding papers. Additionally, we train a baseline
BERT model with a standard cross entropy loss.

6We use the pre-trained bert-base-uncased
model available at https://huggingface.co/
transformers/pretrained_models.html.

4.3 Hyperparameters

The hyperparameters of our framework include the
number of training samples and epochs to train the
shallow model fb as well as parameter a to sched-
ule the annealing process. We only use the training
data, and no information about the challenging sets,
for tuning these parameters. Based on the insight
from our synthetic bias analysis (Section 2), we
choose the sample size and the number of epochs
which result in fb that satisfies the following condi-
tions: (1) its accuracy on the unseen training exam-
ples is around 60% to 70%; (2) More than 90% of
their predictions fall into the high confidence bin
(> 0.9). These variables vary for each task depend-
ing on their diversity and difficulty. For instance,
it takes 2000 examples and 3 epochs of training
for MNLI, and only 500 examples and 4 epochs
for an easier task such as QQP.7 For the annealing
mechanism, we set a = 0.8 as the minimum value
of αt for all experiments across the three tasks. Al-
though this may not be an optimal configuration for
all tasks, it still allows us to observe how gradually
increasing the importance of “biased” examples
may affect the overall performance.

5 Results and Discussion

Main results We experiment with several train-
ing methods for each task: the baseline training,
debiased training with prior knowledge, and the
debiased training using our self-debiasing frame-
work (with and without annealing mechanism). We

7We perform a search on all combinations of 1, 2, 3, 4, and
5 epochs and 500, 1000, 1500, and 2000 examples.

https://huggingface.co/transformers/pretrained_models.html
https://huggingface.co/transformers/pretrained_models.html
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Dataset base. confidence-regularization (∆)
known HANS self-deb. self-deb. ♠

SICK 55.2 +1.2 ⇒ +3.0 =⇒ +2.1 =⇒
RTE 63.6 −0.5 ⇐ +0.5 ⇒ +0.6 ⇒
Diag. 58.6 −0.6 ⇐ +0.4 ⇒ +0.5 ⇒
Scitail 65.4 +1.4 =⇒ +0.4 ⇒ +1.0 =⇒

Table 2: Accuracy results of self-debias confidence reg-
ularization on cross-dataset evaluation.

present the results on the three tasks in Table 1.
Each model is evaluated both in terms of their in-
distribution performance on the original develop-
ment set and their out-of-distribution performance
on the challenge test set. For each setting, we report
the average results across 5 runs.

We observe that: (1) models trained through
self-debiasing framework obtain equally high im-
provements on challenge sets of the three tasks
compared to their corresponding debiased mod-
els trained with a prior knowledge (indicated
as known-bias). In some cases, the existing
debiasing methods can even be more effective
when applied using the proposed framework, e.g.,
self-debias example reweighting obtains 52.3
F1 score improvement over the baseline on the non-
duplicate subset of PAWS (compared to 33.6 by its
known-bias counterpart). This indicates that the
framework is equally effective in identifying biased
examples without previously needed prior knowl-
edge; (2) Most improvements on the challenge
datasets come at the expense of the in-distribution
performance (dev column) except for the confi-
dence regularization models. For instance, the
self-debias product-of-expert (PoE) model,
without annealing, performs 2.2pp lower than the
known-bias model on MNLI dev set. This in-
dicates that self-debiasing may identify more po-
tentially biased examples and thus effectively omit
more training data; (3) Annealing mechanism (in-
dicated by ♠) is effective in mitigating this issue
in most cases, e.g., improving PoE by 0.5pp on
FEVER dev and 1.2pp on MNLI dev while keeping
relatively high challenge test accuracy. Self-debias
reweighting augmented with annealing mechanism
even achieves the highest HANS accuracy in addi-
tion to its improved in-distribution performance.

Cross-datasets evaluation Previous work
demonstrated that targeting a specific bias to opti-
mize performance in the corresponding challenge
dataset may bias the model in other unwanted

directions, which proves to be counterproductive
in improving the overall robustness (Nie et al.,
2019a; Teney et al., 2020). One way to evaluate
the impact of debiasing methods on the overall
robustness is to train models on one dataset and
evaluate them against other datasets of the same
task, which may have different types and amounts
of biases (Belinkov et al., 2019a). A contemporary
work by Wu et al. (2020) specifically finds that
debiasing models based on only a single bias
results in models that perform significantly worse
upon cross-datasets evaluation for the reading
comprehension task.

Motivated by this, we perform similar evalu-
ations for models trained on MNLI through the
three debiasing setups: known-bias to target
the HANS-specific bias, self-debiasing, and
self-debiasing augmented with the proposed
annealing mechanism. We do not tune the hyperpa-
rameters for each target dataset and use the models
that we previously reported in the main results. As
the target datasets, we use 4 NLI datasets: Scitail
(Khot et al., 2018), SICK (Marelli et al., 2014),
GLUE diagnostic set (Wang et al., 2018), and 3-
way version of RTE 1, 2, and 3 (Dagan et al., 2005;
Bar-Haim et al., 2006; Giampiccolo et al., 2007).8

We present the results in Table 2. We observe
that the debiasing with prior knowledge to tar-
get the specific lexical overlap bias (indicated by
knownHANS) can help models to perform better
on SICK and Scitail. However, its resulting mod-
els under-perform the baseline in RTE sets and
GLUE diagnostic, degrading the accuracy by 0.5
and 0.6pp. In contrast, the self-debiased models,
with and without annealing mechanism, outperform
the baseline on all target datasets, both achieving
additional 1.1pp on average. The gains by the two
self-debiasing suggest that while they are effec-
tive in mitigating the effect of one particular bias
(i.e., lexical overlap), they do not result in models
learning other unwanted patterns that may hurt the
performance on other datasets. These results also
extend the findings of Wu et al. (2020) to the NLU
settings in that addressing multiple biases at once,
as done by our general debiasing method, leads to
a better overall generalization.

Analyzing the annealing mechanism In previ-
ous experiments, we show that setting the mini-

8We compiled and reformated the dataset files which
are available at https://nlp.stanford.edu/
projects/contradiction/.

https://nlp.stanford.edu/projects/contradiction/
https://nlp.stanford.edu/projects/contradiction/
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Figure 4: Analysis of the annealing mechanism using
different values of minimum αt.

mum αt to only slightly lower than 1 (i.e., a = 0.8)
results in improvements on the in-distribution with-
out substantial degradation on challenge datasets
scores. We question whether this behavior persists
once we set a closer to 0. Specifically, do models
fall back to the baseline performance when the loss
gets more equivalent to the standard cross-entropy
at the end of the training?

We run additional experiments using the self-
debiased example reweighting on QQP⇒ PAWS
evaluations. We consider the following values to
set the minimum αt: 1.0, 0.8, 0.6, 0.4, 0.2, and 0.0.
For each experiment, we report the average scores
across multiple runs. As we see in Figure 4, the
challenge test scores decrease as we set minimum
a to lower values. Annealing can still offer a rea-
sonable trade-off between in-distribution and chal-
lenge test performances up until a = 0.6, before
falling back to baseline performance at a = 0.
These results suggest that models are still likely
to learn spurious shortcuts from biased examples
that they are exposed to even at the end of the
training. Consequently, the annealing mechanism
should be used cautiously by setting the minimum
αt to moderate values, e.g., 0.6 or 0.8.

Impact on learning dynamics We previously
show (Figure 2) that baseline models tend to learn
easier examples more rapidly, allowing them to
make correct predictions by relying on biases. As
the self-debiasing framework manages to mitigate
this fallible reliance, we expect some changes in
models’ learning dynamics. We are, therefore, in-
terested in characterizing these changes by analyz-
ing their training loss curve. In particular, we exam-
ine the individual losses on each training batch and
measure their variability using percentiles (i.e., 0th,
25th, 50th, 75th, and 100th percentile). Figure 5
shows the comparison of the individual loss vari-

0 2000 4000 6000 8000 10000
train step

10 2

10 1

100

lo
ss

baseline self-debiased

0 2000 4000 6000 8000 10000

Figure 5: Training loss curves for the first 15K steps by
the baseline and self-debias example reweighting train-
ing (shown in log scale). Solid lines indicate the me-
dian loss within each training batch. The dark and light
shadow areas represent the range between 25th to 75th
percentile and the range between 0th (minimum) and
100th percentile (maximum), respectively.

ability between the baseline and the self-debiased
models when trained on MNLI. We observe that
the median loss of the baseline model converges
faster than the self-debiased counterpart (dotted
solid lines). However, examples below its 25th
percentile already have losses smaller than 10−1

when the majority of the losses are still high (darker
shadow area). This indicates that unregularized
training optimizes faster on certain examples, pos-
sibly due to the presence of biases. On the con-
trary, self-debiased training maintains relatively
less variability of losses throughout the training.
This result suggests that overconfident predictions
(unusually low loss examples) can be an indication
of the model utilizing biases. This is in line with
the finding of Utama et al. (2020), which shows
that regularizing confidence on biased examples
leads to improved robustness against biases.

Bias identification stability Researchers have
recently observed large variability in the general-
ization performance of fine-tuned BERT model
(Mosbach et al., 2020; Zhang et al., 2020), espe-
cially in the out-of-distribution evaluation settings
(McCoy et al., 2019a; Zhou et al., 2020). This
may raise concerns on whether our shallow models,
which are trained on the sub-sample of the training
data, can consistently learn to rely mostly on biases.
We, therefore, train 10 instances of shallow models
on the MNLI dataset using different random seeds
(for classifier’s weight initialization and training
sub-sampling). For evaluation, we perform two dif-
ferent partitionings of MNLI dev set based on the
output of two simple hand-crafted models, which
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Figure 6: Evaluation of 10 shallow model instances on
easy/hard partitioning of MNLI dev based on the pres-
ence of lexical overlap and hypothesis-only biases. The
results suggest the stability of shallow models in captur-
ing the two biases.

use lexical overlap and hypothesis-only features
(Gururangan et al., 2018), respectively. The stabil-
ity of bias utilization across the runs is evaluated
by measuring their performance on easy and hard
subsets of each partitioning, where examples that
simple models predicted correctly belong to easy
and the rest belong to hard.9

Figure 6 shows the results. We observe small
variability in the overall dev set performance which
ranges in 61-65% accuracy. Similarly, the models
obtain consistently higher accuracy on the easy
subsets over the hard ones: 79-85% vs. 56-59%
on the lexical-overlap partitioning and 72-77% vs.
48-50% on the hypothesis-only partitioning. The
results indicate that: 1) the bias-reliant behavior of
shallow models is stable; and 2) shallow models
capture multiple types of bias. However, we also
observe one rare instance of the shallow model that
fails to converge during training and is stuck at
making random predictions (33% in MNLI). This
may indicate that the biased examples are under-
sampled in that particular run. In that case, we
can easily spot this undesired behavior, discard the
model, and perform another sampling.

6 Related Work

The artifacts of large scale dataset collections re-
sult in dataset biases that allow models to perform
well without learning the intended reasoning skills.
In NLI, models can perform better than chance
by only using the partial input (Gururangan et al.,
2018; Poliak et al., 2018; Tsuchiya, 2018) or by
basing their predictions on whether the inputs are

9Although this may seem to be against the spirit of not
using prior knowledge about the biases, we believe that this
step is necessary to show the stability of the shallow models
and to validate if they indeed capture the intended biases.

highly overlapped (McCoy et al., 2019b; Dasgupta
et al., 2018). Similar phenomena exist in various
tasks, including argumentation mining (Niven and
Kao, 2019), reading comprehension (Kaushik and
Lipton, 2018), or story cloze completion (Schwartz
et al., 2017; Cai et al., 2017). To allow a better
evaluation of models’ reasoning capabilities, re-
searchers constructed challenge test sets composed
of “counterexamples” to the spurious shortcuts that
models may adopt (Jia and Liang, 2017; Glockner
et al., 2018; Zhang et al., 2019; Naik et al., 2018).
Models evaluated on these sets often fall back to
random baseline performance.

There has been a flurry of work in dynamic
dataset construction to systematically reduce
dataset biases through adversarial filtering (Zellers
et al., 2018; Sakaguchi et al., 2020; Bras et al.,
2020) or human in the loop (Nie et al., 2019b;
Kaushik et al., 2020; Gardner et al., 2020). While
promising, researchers also show that newly con-
structed datasets may not be fully free of hidden
biased patterns (Sharma et al., 2018). It is thus
crucial to complement the data collection efforts
with learning algorithms that are more robust to
biases, such as the recently proposed product-of-
expert (Clark et al., 2019; He et al., 2019; Mahabadi
et al., 2020), confidence regularization (Utama
et al., 2020), or other training strategies (Belinkov
et al., 2019b; Yaghoobzadeh et al., 2019; Tu et al.,
2020). Despite their effectiveness, these methods
are limited by their assumption on the availabil-
ity of information about the task-specific biases.
Our framework aims to alleviate this limitation and
enable them to address unknown biases.

7 Conclusion

We present a general self-debiasing framework to
address the impact of unknown dataset biases by
omitting the need for thorough dataset-specific
analysis to discover the types of biases for each
new dataset. We adopt the existing debiasing meth-
ods into our framework and enable them to obtain
equally high improvements on several challenge
test sets without targeting a specific bias. The eval-
uation also suggests that our framework results
in better overall robustness compared to the bias-
specific counterparts. Based on our analysis, future
work in the direction of automatic bias mitigation
may include identifying potentially biased exam-
ples in an online fashion and discouraging models
from exploiting them throughout the training.
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A Natural Language Inference

Main model We finetune the BERT base model
for all settings (baseline, known-bias, and self-
debiasing) using default parameters: 3 epochs of
training with learning rate 5−5. An exception is
made for product-of-expert and confidence regular-
ization, where we follow He et al. (2019) to run the
training longer, i.e. 5 epochs.

Shallow model The shallow model for MNLI is
trained on 2K of examples for 3 epochs using the
default learning rate of 5−5.

B Fact verification

Main model We follow Schuster et al. (2019) in
finetuning the BERT base model on FEVER dataset
using the following parameters: learning rate 2−5

and 3 epochs of training.

Shallow model The shallow model can be
trained in lesser amount of data, 500 examples. We
train the model for 5 epochs with the same learning
rate, 2−5.

C Paraphrase Identification

Main model We follow Utama et al. (2020) in
setting the parameters for training a QQP model:
learning rate 2−5 and 3 epochs of training.

Shallow model Similar to FEVER, we train the
shallow model using only 500 examples. It con-
verges in 4 epochs using the same learning rate,
2−5.

D Synthetic MNLI Results

We report the final accuracy of models when trained
on our synthetic bias datasets. We show that the
anti-biased accuracy correlates negatively with the
proportion of the biased examples. We present the
results in Table 3.

Bias prop. test sets
original biased anti-biased

0.9 83.6 ⇐ 97.1 =⇒ 61.7 ⇐=

0.8 83.7 ⇐ 95.3 =⇒ 70.4 ⇐=

0.7 83.9 ⇐ 92.8 ⇒ 75.5 ⇐
0.6 84.1 = 90.9 ⇒ 78.5 ⇐

Table 3: Final accuracy of models trained on synthetic
bias datasets.

E Detailed HANS Results

HANS dataset (McCoy et al., 2019b) consist of
three subsets, covering different inference phenom-
ena which happen to have lexical overlap: (a) Lex-
ical overlap e.g., “The doctor was paid by the ac-
tor” vs. “The doctor paid the actor”; (b) Subse-
quence, e.g., “The doctor near the actor danced”
vs. “The actor danced”; and (c) Constituent e.g.,
“If the artist slept, the actor ran” vs. “The artist
slept”. Each subset contains examples of both en-
tailment and non-entailment. The 3-way predic-
tions on MNLI is mapped to HANS by taking max
pool between neutral and contradiction labels. We
present the results of our experiments in Table 4.

Method HANS all sets (Acc.)
Lex Lex. Sub. Sub. Con. ¬Con.

BERT-base 96.0 51.8 99.5 7.4 99.4 14.5

Rew. self-debias 81.3 73.3 94.7 34.5 92.8 42.3
Rew. ♠ self-debias 84.7 77.1 96.0 30.5 95.3 37.4

PoE self-debias 77.0 73.6 92.1 42.2 89.3 49.8
PoE ♠ self-debias 78.5 67.7 91.3 28.6 95.4 45.1

Conf-reg self-debias 81.8 78.2 93.7 31.7 95.1 31.5
Conf-reg ♠ self-debias 87.4 74.5 96.3 27.4 95.1 26.6

Table 4: Models’ performance on HANS challenge test
set (McCoy et al., 2019b). Column lex., con., and
sub. stand for lexical overlap, constituency, and sub-
sequence, respectively. The (¬) symbol indicates the
non-entailment subset.


