@inproceedings{aminian-etal-2020-multitask,
title = "Multitask Learning for Cross-Lingual Transfer of Broad-coverage Semantic Dependencies",
author = "Aminian, Maryam and
Rasooli, Mohammad Sadegh and
Diab, Mona",
editor = "Webber, Bonnie and
Cohn, Trevor and
He, Yulan and
Liu, Yang",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.emnlp-main.663",
doi = "10.18653/v1/2020.emnlp-main.663",
pages = "8268--8274",
abstract = "We describe a method for developing broad-coverage semantic dependency parsers for languages for which no semantically annotated resource is available. We leverage a multitask learning framework coupled with annotation projection. We use syntactic parsing as the auxiliary task in our multitask setup. Our annotation projection experiments from English to Czech show that our multitask setup yields 3.1{\%} (4.2{\%}) improvement in labeled F1-score on in-domain (out-of-domain) test set compared to a single-task baseline.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="aminian-etal-2020-multitask">
<titleInfo>
<title>Multitask Learning for Cross-Lingual Transfer of Broad-coverage Semantic Dependencies</title>
</titleInfo>
<name type="personal">
<namePart type="given">Maryam</namePart>
<namePart type="family">Aminian</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohammad</namePart>
<namePart type="given">Sadegh</namePart>
<namePart type="family">Rasooli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mona</namePart>
<namePart type="family">Diab</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Bonnie</namePart>
<namePart type="family">Webber</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Trevor</namePart>
<namePart type="family">Cohn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yulan</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We describe a method for developing broad-coverage semantic dependency parsers for languages for which no semantically annotated resource is available. We leverage a multitask learning framework coupled with annotation projection. We use syntactic parsing as the auxiliary task in our multitask setup. Our annotation projection experiments from English to Czech show that our multitask setup yields 3.1% (4.2%) improvement in labeled F1-score on in-domain (out-of-domain) test set compared to a single-task baseline.</abstract>
<identifier type="citekey">aminian-etal-2020-multitask</identifier>
<identifier type="doi">10.18653/v1/2020.emnlp-main.663</identifier>
<location>
<url>https://aclanthology.org/2020.emnlp-main.663</url>
</location>
<part>
<date>2020-11</date>
<extent unit="page">
<start>8268</start>
<end>8274</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Multitask Learning for Cross-Lingual Transfer of Broad-coverage Semantic Dependencies
%A Aminian, Maryam
%A Rasooli, Mohammad Sadegh
%A Diab, Mona
%Y Webber, Bonnie
%Y Cohn, Trevor
%Y He, Yulan
%Y Liu, Yang
%S Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)
%D 2020
%8 November
%I Association for Computational Linguistics
%C Online
%F aminian-etal-2020-multitask
%X We describe a method for developing broad-coverage semantic dependency parsers for languages for which no semantically annotated resource is available. We leverage a multitask learning framework coupled with annotation projection. We use syntactic parsing as the auxiliary task in our multitask setup. Our annotation projection experiments from English to Czech show that our multitask setup yields 3.1% (4.2%) improvement in labeled F1-score on in-domain (out-of-domain) test set compared to a single-task baseline.
%R 10.18653/v1/2020.emnlp-main.663
%U https://aclanthology.org/2020.emnlp-main.663
%U https://doi.org/10.18653/v1/2020.emnlp-main.663
%P 8268-8274
Markdown (Informal)
[Multitask Learning for Cross-Lingual Transfer of Broad-coverage Semantic Dependencies](https://aclanthology.org/2020.emnlp-main.663) (Aminian et al., EMNLP 2020)
ACL