Learning Collaborative Agents with Rule Guidance for Knowledge Graph Reasoning

Deren Lei, Gangrong Jiang, Xiaotao Gu, Kexuan Sun, Yuning Mao, Xiang Ren


Abstract
Walk-based models have shown their advantages in knowledge graph (KG) reasoning by achieving decent performance while providing interpretable decisions. However, the sparse reward signals offered by the KG during a traversal are often insufficient to guide a sophisticated walk-based reinforcement learning (RL) model. An alternate approach is to use traditional symbolic methods (e.g., rule induction), which achieve good performance but can be hard to generalize due to the limitation of symbolic representation. In this paper, we propose RuleGuider, which leverages high-quality rules generated by symbolic-based methods to provide reward supervision for walk-based agents. Experiments on benchmark datasets shows that RuleGuider clearly improves the performance of walk-based models without losing interpretability.
Anthology ID:
2020.emnlp-main.688
Volume:
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)
Month:
November
Year:
2020
Address:
Online
Editors:
Bonnie Webber, Trevor Cohn, Yulan He, Yang Liu
Venue:
EMNLP
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
8541–8547
Language:
URL:
https://aclanthology.org/2020.emnlp-main.688
DOI:
10.18653/v1/2020.emnlp-main.688
Bibkey:
Cite (ACL):
Deren Lei, Gangrong Jiang, Xiaotao Gu, Kexuan Sun, Yuning Mao, and Xiang Ren. 2020. Learning Collaborative Agents with Rule Guidance for Knowledge Graph Reasoning. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 8541–8547, Online. Association for Computational Linguistics.
Cite (Informal):
Learning Collaborative Agents with Rule Guidance for Knowledge Graph Reasoning (Lei et al., EMNLP 2020)
Copy Citation:
PDF:
https://aclanthology.org/2020.emnlp-main.688.pdf
Video:
 https://slideslive.com/38938912
Code
 derenlei/KG-RuleGuider
Data
FB15k-237NELL-995WN18RR