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Abstract
The goal of open information extraction (OIE)
is to extract facts from natural language text,
and to represent them as structured triples of
the form 〈subject, predicate, object〉. For ex-
ample, given the sentence »Beethoven com-
posed the Ode to Joy.«, we are expected
to extract the triple 〈Beethoven, composed,
Ode to Joy〉. In this work, we systemati-
cally compare different neural network archi-
tectures and training approaches, and improve
the performance of the currently best models
on the OIE16 benchmark (Stanovsky and Da-
gan, 2016) by 0.421 F1 score and 0.420 AUC-
PR, respectively, in our experiments (i.e., by
more than 200% in both cases). Furthermore,
we show that appropriate problem and loss for-
mulations often affect the performance more
than the network architecture.

1 Introduction

The field of information extraction (IE) focuses on
the automatic acquisition of information from text
in a structured format (Jurafsky and Martin, 2009;
Niklaus et al., 2018), and methods from this field
are used to automatically collect desired informa-
tion from large corpora of text. Traditionally, IE
methods were developed for specific domains with
homogeneous corpora and fixed sets of predicates
and entities (Niklaus et al., 2018). Such methods
are unable to generalize beyond their domains, as
they are limited by their predefined collections of
entities and predicates.

The area of open information extraction (OIE) was
introduced as an alternative approach to IE (Banko
et al., 2007), where predicates and entities are not
restricted to a specific domain. More formally, the
aim of an OIE algorithm is to extract all facts en-
tailed by the input text in the format of 〈subject,
predicate, object〉 triples. Alternative formula-
tions allow for longer tuples, however, most of the
work (including ours) focuses on binary predicates

∗∗ Equal contribution.

only. Given a sentence »Sam succeeded in convinc-
ing John.«, an OIE system should extract a tuple:
〈Sam, succeeded in convincing, John〉. The relation
phrase »succeeded in convincing« indicates the se-
mantic relationship between »Sam« and »John«.
OIE plays a key role in several downstream natu-
ral language processing (NLP) applications, such
as knowledge base construction from text (Soder-
land et al., 2010), question answering (Fader et al.,
2014), information retrieval (Etzioni, 2011), text
comprehension, and natural language understand-
ing (Mausam, 2016).

In this work, we focus on the extraction of binary
relations, and introduce several novel neural ap-
proaches to OIE. We construct our models from
three blocks, namely, an embedding block, an en-
coding block, and a prediction block, and introduce
several possible implementations of each of them.
Furthermore, we exhaustively test all possible com-
binations of their use, and show that output encod-
ing and loss function strongly influence the results.
To that end, we introduce and test three different
training schemes, and investigate their influence on
the performance of a model.

All experiments have been conducted on the OIE16
benchmark by Stanovsky and Dagan (2016). As
part of the systematic architecture search, several
existing neural architectures for OIE (Stanovsky
et al., 2018; Zhan and Zhao, 2019; Cui et al., 2018)
have been tested and compared under equal condi-
tions.

The main contributions of this work are:

• We introduce and compare different possible
training schemes for OIE as a sequence tag-
ging problem.
• We provide a large-scale study of existing and

new OIE models, and compare them under the
various introduced training schemes.
• We obtain our best results with a novel model

based on transformers (Vaswani et al., 2017)
and long short-term memories (LSTMs), and
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improve the current state of the art on the
OIE16 benchmark (Stanovsky et al., 2018) by
0.421 F1 score and 0.420 AUC-PR, respec-
tively, i.e., by more than 200% in both cases.

2 Related Work

TextRunner (Banko et al., 2007) stands out as the
first OIE system. After TextRunner, a number of
OIE systems have been developed, such as Clau-
seIE (Corro and Gemulla, 2013), ProPS (Stanovsky
et al., 2016), and OpenIE4 (Angeli et al., 2015).
These systems are mostly rule-based and use the
language syntax to extract triples from sentences.
For example, ClauseIE makes use of linguistic
knowledge of the grammar of a sentence to detect
clauses, and to identify the type of any such. Ope-
nIE4 uses semantic role labeling to extract tuples
from a sentence, and PropS relies on the proposi-
tion structure of syntax and dependency trees of the
input sentence. However, rule-based systems suffer
from severe error propagation when applied to ex-
amples outside of expected language patterns (Cui
et al., 2018).

Recently, several approaches based on neural net-
work (NN) architectures have been introduced
(Stanovsky et al., 2018; Cui et al., 2018; Zhan
and Zhao, 2019; Jia and Xiang, 2019). As one
of the first neural methods, Stanovsky and Da-
gan (2016) treat OIE as a sequence-tagging task,
and use a bidirectional long short-term memory
(BiLSTM) architecture with a softmax layer to pre-
dict a BIO tag (Ratinov and Roth, 2009), as defined
below, for each word in the input sentence. In
contrast to this, Cui et al. (2018) consider OIE as
a problem of neural machine-translation (NMT)
from English into a triple, and approach it with
an attention-based sequence-to-sequence model
(Bahdanau et al., 2015). Jia and Xiang (2019)
use the same sequence-tagging problem formula-
tion as Stanovsky et al. (2018) and extend their
work with systematic tests of various NN architec-
tures, such as (Bi)LSTMs, convolutional neural net-
works (CNNs), and their combinations with condi-
tional random fields (CRFs). Finally, they develop
a hybrid model that combines BiLSTMs, CNNs,
and CRFs to achieve a maximal performance.

Zhan and Zhao (2019) introduce a span model
for n-ary OIE to replace the previously adopted
sequence-tagging formulation. Their BiLSTM-
based model finds predicate spans separately and
uses a separate BiLSTM module to find arguments
(entities), given a predicate as an input.

3 Task Formulation

As defined earlier, we aim to extract binary rela-
tions from single sentences. Each fact is repre-
sented as a triple 〈subject, predicate, object〉 and
elements have to be non-overlapping contiguous
phrases in the sentence.

Following Stanovsky et al. (2018), we treat OIE
as a sequence-tagging task, where each word is
labelled with a BIO tag. To that end, each el-
ement of a triple is implicitly extracted by la-
beling the according sequence of words with a
Beginning-tag followed by an arbitrary number
of Inside-tags, and words that are not part of
any extracted phrase are marked with the Outside-
tag. Tags are prefixed with A0 if they refer to
a triple’s subject, P for the predicate, and A1 to
refer to the object of the extracted triple. We
use a total of seven different labels, denoted as
L = {A0-B,A0-I,P-B,P-I,A1-B,A1-I,O}, and
Figure 1 illustrates how they are used to extract
triples from text.

More recently, Zhan and Zhao (2019) introduced
an alternative formulation that is based on spans
rather than sequence tags. A span is a subsequence
of the sentence and an extracted triple is a set of
three disjunct spans, corresponding to subject, pred-
icate, and object. They generate all possible can-
didate triples and use a model to score them. To
restrict the exponentially growing number of possi-
ble triples, additional restrictions are put into place,
such as maximum length or syntactic requirements
(cf. Zhan and Zhao (2019).

Unlike its formal counterpart, semantic parsing,
the task of OIE is defined more vaguely, and hence
leaves some space for interpretation. For instance,
one could generally consider both 〈Ludwig van
Beethoven, was, a world-famous composer〉 and
〈Ludwig van Beethoven, was, a world-famous com-
poser of classical music〉 valid extractions for the
first example provided in Figure 1, but ultimately,
this is a design choice that depends on the concrete
application. Also, there is no fixed schema of rela-
tions to be extracted. This introduces another level
of complexity, as memorization of encountered pat-
terns for a given set of relations is insufficient for a
good performance and generalization.

We highlight that single sentences frequently in-
duce more than one triple. As an example of this,
consider the lower part of Figure 1, which illus-
trates a sentence that consolidates two different
pieces of information.

Based on the preceding deliberations, we can view
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Ludwig van Beethoven was a world - famous composer of classical music .
A0-B A0-I A0-I P-B A1-B A1-I A1-I A1-I A1-I O O O O

⇒ 〈Ludwig van Beethoven, was, a world-famous composer〉

Beethoven , who died in 1827 , composed the Ode to Joy .
A0-B O O P-B P-I A1-B O O O O O O
A0-B O O O O O O P-B O A1-B A1-I A1-I O

⇒ 〈Beethoven, died in, 1827〉
〈Beethoven, composed, Ode to Joy〉

Figure 1: Two examples of the kind of data extraction that is considered in OIE.

any problem instance as a tuple 〈X,Y 〉, where
X = 〈w1, w2, . . . , wm〉 describes a sentence as a
sequence of words, and Y = {y1, y2, . . . , yn} de-
fines a set of valid extractions. Depending on the
problem definition being used, the elements in Y
are either sequences of BIO tags, i.e., yi ∈ Lm for
1 ≤ i ≤ n, or triples specified in terms of spans.
Independently of the employed input and output
formulation, our aim in this work is to model the
conditional distribution P {y | X}.

4 Methodology

In this work, we consider several variations and
extensions of existing architectures for OIE viewed
both as sequence-tagging and as span-prediction
task. To that end, we subdivide models conceptu-
ally into three blocks, which we call embedding,
encoding, and prediction (listed from the bottom to
the top), and investigate the impact of different NN
modules for each of them below. The blocks serve
the obvious purposes indicated by the according
designations, and are described in detail in the rest
of this section.

Embedding. The embedding block represents the
bottom part of our models, and serves the pur-
pose of mapping text, given as sequence of tokens,
to a sequence of embedding vectors. Tradition-
ally, embedding vectors were (pre-)trained for a
fixed vocabulary of tokens, and used directly in
place of any actual tokens in a processed input se-
quence (Pennington et al., 2014). More recently,
however, different models for computing contex-
tualized vector representations of tokens in an in-
put sequence have been used to represent text in-
put (Alec et al., 2018; Devlin et al., 2018; Howard
and Ruder, 2018), which induced notable progress
on a multitude of NLP tasks.

We consider both approaches, and use either just
word-piece embeddings (Wu et al., 2016), which
we refer to as simple embedding block, or AL-
BERT (Lan et al., 2019) for computing contextual-

ized representations.

For the task of OIE, it is a common practice to make
use of part-of-speech (PoS) tags in addition to the
actual input text (Stanovsky et al., 2018; Jia and
Xiang, 2019; Zhan and Zhao, 2019). We follow
this, and append an embedding representing the
according PoS tag to every vector produced by the
used embedding block. In the case of word pieces,
each sub-word token was attributed the same PoS
tag as the full word it belongs to.

Encoding. The encoding block constitutes the mid-
dle part of the considered models, which processes
an embedded input sequence, as provided by the
module used in the embedding block, and outputs
an encoded sequence of equal length. In this work,
we make use of three different NN modules for
encoding embedded sequences: a BiLSTM, the
encoder part of a transformer, and a BiLSTM com-
bined with a CNN, as introduced by Jia and Xiang
(2019). For the simple BiLSTM encoder, we con-
catenate the top-layer hidden states of both direc-
tions, and use these as encodings of the respective
tokens in the input sequence. The LSTM-CNN
encoder processes a provided sequence in parallel
with a BiLSTM and a CNN that are independent
of each other. The used CNN consists of just one
convolutional layer followed by max-pooling, and
maps the entire embedded input sequence, viewed
as matrix, to a single output vector. This vector is
then concatenated with every step in the encoded
sequence that is provided by the BiLSTM to yield
the final output. Again, the encoding provided by
the BiLSTM consists of the concatenated top-layer
hidden states.

Prediction. The top block of a model takes an
encoded sequence as input, and computes a proba-
bility distribution over all possible triples to extract.
We consider four different model architectures as
prediction blocks, three for the sequence-tagging
setting, based on LSTMs, CRFs, and multi-layer
perceptrons (MLPs), and the recently introduced
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SpanOIE model (Zhan and Zhao, 2019), which
considers OIE as a span-prediction task.

We use LSTMs for predicting label sequences left-
to-right such that every step models the conditional
distribution of the next label given the encoded
input sequence up to the current step as well as all
previously predicted labels, i.e.,

P {〈y1, . . . , ym〉 | 〈e1, . . . , em〉} =∏
i

P {yi | e1, . . . , ei, y1, . . . , yi−1} , (1)

where 〈e1, . . . , em〉 is an encoded sequence,
as provided by the used encoding block, and
〈y1, . . . , ym〉 ∈ Lm a sequence of labels.

CRFs are commonly used in combination with
sequential models, such as recurrent neural net-
works (RNNs), since they provide a convenient
way of modeling the joint distribution of entire la-
bel sequences rather than just step-wise conditional
distributions. Furthermore, using CRFs on top of a
recurrent model frequently results in an increased
prediction accuracy (e.g., Huang et al., 2015). For
our purposes, we employ a standard linear-chain
CRF as prediction block.

MLPs are another family of NN modules that is
frequently used for predicting labels in the context
of OIE. In contrast to the previously mentioned
predictors, however, they compute labels indepen-
dently for each step of an input sequence, disregard-
ing those computed for any surrounding positions.
Hence, employing MLPs is based on the simplify-
ing assumption that

P {〈y1, . . . , ym〉 | 〈e1, . . . , em〉} =
∏
i

P {yi | ei} ,

(2)
using the same terminology as above.

Finally, we use the SpanOIE model as the only pre-
diction block that is based on the span-formulation
of OIE. For an encoded input sequence, this model
computes scores independently for each triple in a
set of candidates to extract, which are then normal-
ized to yield a probability distribution. We defer
the interested reader to Zhan and Zhao (2019) for
any details.

Training Loss. Since prediction blocks aim to
model the probability distribution over all candi-
date triples to extract, the negative log-likelihood
(NLL) lends itself as the natural loss function to
use. If we consider OIE as a sequence-tagging task,
however, then optimizing the NLL requires us to
deal with one problematic aspect. Among all BIO

tags, the O-tag, indicating tokens that are not part
of subject, predicate, or object, tends to appear at
a much higher frequency than other tags. This, in
turn, means that the ability to correctly predict O-
tags has the strongest direct influence on the NLL,
and encourages models to focus too much on this
label.

To account for this issue, we explore three novel
training schemes, which disregard the probabilities
of certain positions in a sequence for computing
the NLL, as illustrated in Figure 2. A straightfor-
ward attempt to decrease the influence of O-tags
on the loss term is to disregard them entirely (cf.
Figure 2a). Since we model probability distribu-
tions over tag sequences as opposed to comput-
ing unnormalized scores, the law of total prob-
ability allows for a network to still learn when
to predict O-tags, even though it is not explic-
itly trained to do so. Informally, this means that
P {O} = 1 − P {B} − P {I}, which is why the
trained network learns to predict O-tags when the
probabilities of all remaining tags are small.

The second training scheme is based on the observa-
tion that the critical aspect of predicting a sequence
of tags is identifying transitions between a block of
O-tags and an element of the triple, i.e., the subject,
the predicate, and the object, or directly between
two of the latter. Hence, this training scheme disre-
gards all probabilities except for those of positions
that appear right before or right after a transition
(cf. Figure 2b). Intuitively, this makes sense, as
all the disregarded tags can be determined immedi-
ately, once we know the boundaries of the subject,
the predicate, and the object.

Combining the two previously outlined ideas re-
sults in our third trained scheme, which optimizes
only the first and the last position of every ele-
ment of the extracted triple (cf. Figure 2c). Again,
remaining tags can be determined from the knowl-
edge of these tags only.

Finally, notice that the presented schemes are used
during the training of a model only. For inference
and sampling, we make use of all probabilities,
including those of O-tags.

5 Experimental Evaluation

Dataset. For our experiments, we made use of
the OIE16 benchmark dataset (Stanovsky and Da-
gan, 2016). With a total of 5,078 training sam-
ples, the dataset is rather small, though, making
it hard to train models that generalize to unseen
problem instances. For this work, we thus aug-
mented the OIE16 training data with samples from
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(a) O O A0-B A0-I A0-I O O O O P-B P-I O A1-B A1-I O
(b) O O A0-B A0-I A0-I O O O O P-B P-I O A1-B A1-I O
(c) O O A0-B A0-I A0-I O O O O P-B P-I O A1-B A1-I O

Figure 2: (a) Excluding all O tags when computing the loss. (b) Considering only the tags in the transitions
between different tags (c) Considering only the tags in the transitions between different tags that are not O.

another dataset created by Cui et al. (2018). The
latter is a huge dataset, consisting of more than
36M training samples that have been generated us-
ing OpenIE4 (Angeli et al., 2015), and contains
examples with lower quality than the OIE16 data.
Furthermore, there is usually just one target triple
to extract per sentence in this dataset, while OIE
models are generally expected to find all of them.

To make effective use of the low-quality dataset,
we had to perform a number of preprocessing steps
(described in detail in Appendix A, which left us
with a total of 1.7M training samples that were
combined with the training partition of the OIE16
benchmark dataset.

Experimental Evaluation. We conducted a large-
scale study in which we trained and evaluated
all combinations of embedding, encoding, and
prediction blocks introduced above. For those
models containing an ALBERT embedding block,
we made use of a pretrained ALBERT model
(albert-base-v1) provided by Wolf et al. (2019).
Due to resource constraints, we had to freeze the
parameters of the ALBERT blocks to speed up
the training of our models. For models containing
a simple embedding block, we used word-piece
embeddings (Wu et al., 2016) rather than word
embeddings, since these yielded better results in
our experiments, and employed the embedding vec-
tors that were pretrained with the same ALBERT
model used in the ALBERT embedding blocks to
initialize the model.

Notice that the architectures considered in our
study also cover all the currently most important
methods of OIE that are based on deep learning
(DL) (Angiras, 2018; Cui et al., 2018; Stanovsky
et al., 2018; Zhan and Zhao, 2019; and a slightly
modified version the model by Jia and Xiang 2019,
as described in Appendix C ). We do not compare to
any rule-based OIE systems, though, as they have
been shown to consistently achieve inferior results
than DL-based approaches in related work (Angi-
ras, 2018; Cui et al., 2018; Stanovsky and Dagan,
2016).

Models that use either the LSTM or the MLP pre-
diction block were trained and evaluated for all the
training schemes presented above. Other predictors

cannot be used with any of the newly introduced
schemes, though, and were thus trained by mini-
mizing the standard NLL only.

All considered models were evaluated on the test
partition of the OIE16 dataset with respect to both
F1 score and the area under the precision-recall
curve (AUC-PR). To that end, we computed the
top-20 predictions for each of the samples in the
test data, using either beam search or, in the case of
the CRF predictor, the Viterbi algorithm, and con-
sidered all predictions with a probability above a
certain threshold as extractions of the model evalu-
ated. As the prediction threshold, we chose the one
that achieved the maximum F1 score on the valida-
tion partition of the OIE16 dataset separately for
each model. Notice that the prediction threshold
was well below 0.5 in all our experiments, usu-
ally around 0.1, and thus allowed for extracting
multiple triples per sample.

To determine whether a predicted triple matches
any of the target triples in the test data, we em-
ployed the evaluation scheme that is typically used
in the context of OIE (He et al., 2015; Stanovsky
and Dagan, 2016).1 To that end, a predicted triple
is considered correct, if each of its elements, i.e.,
subject, predicate, and object, contains the syntac-
tic head of the corresponding element in the target
triple. For instance, if the test set contains a triple
〈Donald Trump, is, president of the U.S.〉, then the
prediction 〈Trump, is, president of the U.S.〉 is con-
sidered correct, as »Trump« is the syntactic head
of the subject phrase »Donald Trump«.

Occasionally, OIE models are evaluated with
predicate-head hinting (Stanovsky et al., 2018),
which means that the beginning of the predicate
in the target triple is marked as part of the input.
More precisely, a special token is inserted into the
input sequence right before the first token that is
part of the predicate to extract, the so-called predi-
cate head. This, obviously, makes the task of OIE
considerably easier, and does not reflect the typical
problem scenario. Nevertheless, we run all experi-
ments a second time with predicate-head hinting,
and provide the according results in Appendix B.

1This is the same evaluation scheme that is used by the
well-known benchmark script by Stanovsky and Dagan (2016).
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Due to the great number of experiments that have
been conducted, it was not possible for us to per-
form grid search for every one of them separately.
Instead, we chose a set of hyperparameters that
we found to work well across a multitude of ini-
tial training runs, and kept them constant over all
performed experiments. The exact hyperparameter
values are reported in Appendix A. Furthermore,
the code that was written for our experimental eval-
uation is available for download on GitHub. 2

Results. Table 1 summarizes the results of our
comparative study, and provides a number of in-
teresting insights. First and foremost, we see that
the model with the transformer encoding and the
LSTM prediction block achieved the best F1 score
both with and without ALBERT embedding block.
The prior is also the overall best model with respect
to both F1 score and AUC-PR, and outperformed
all the considered state-of-the-art approaches by a
significant margin of at least 0.421 F1 score and
0.420 AUC-PR, respectively. While one might
have expected to see the transformer encoding
block at the top of the score board, it is surpris-
ing that the CRF predictor performed significantly
worse than the LSTM and MLP prediction blocks,
as CRFs have previously achieved strong results on
different task of sequence prediction (e.g., Huang
et al., 2015). What comes less at surprise, though,
is that using an ALBERT embedding block led to
an increased performance in almost all cases, which
is in line with the existing research on BERT and re-
lated models. Another important insight is that the
newly introduced training schemes for sequence-
tagging models helped to boost performance signifi-
cantly in comparison with the usual way of comput-
ing the training loss. In this context, optimizing the
first and the final tokens of subject, predicate, and
object only proved particularly useful (column (d)
in the table), and led to the best results for almost
all encoding and prediction blocks.

At this point, we want to emphasize that the re-
sults that we have achieved for models from related
work differ significantly from those reported in the
respective papers, which is easily explained by the
difference in how models were evaluated in the
same. In the context of OIE, it is common practice
to pre-select candidate triples during inference, and
subsequently use a model to score each of them.
While this might make sense for optimizing a sys-
tem in a production environment, it obfuscates a
model’s true ability to some extent, which is why
we decided to not use any kind of pre-selection at

2https://github.com/phohenecker/emnlp2020-oie

simple→ALBERT +0.012 F1

+BiLSTM +0.051 F1

+BiLSTM-CNN +0.061 F1

+Transformer +0.063 F1

Figure 3: The average improvements caused by using
an ALBERT embedding block in place of a simple one
and by adding an encoding block to a model in terms of
F1 score, computed across all experiments performed.

all.

Analysis and Ablation Studies. In this section,
we further analyze the results presented above, in-
cluding the ablations that have been performed as
part of our comparative study already. Furthermore,
we present additional ablation studies for the best-
performing model.

At the bare minimum, a model consists of a sim-
ple embedding block as well as one of the pre-
diction blocks presented above, while encoding
blocks are generally optional. Hence, we first in-
vestigate the effect of moving from a simple to an
ALBERT embedding block on the one hand and
how adding an encoding block influences a model’s
performance on the other—Figure 3 summarizes
our insights. First and foremost, we observed that
encoding blocks, on average, cause much higher
improvements than using an ALBERT embedding
block in place of a simple one. More precisely,
ALBERT caused just a small mean improvement
of 0.012 F1. Encoding blocks, however, pushed
performance notably by 0.058 F1, on average, and,
as expected, transformers performed best among
all considered encoding blocks.

Next, we compare the various prediction blocks
used in our experiments. To that end, Figure 4
illustrates the mean performance of each predic-
tion block contrasted with the mean F1 score com-
puted over all experiments performed. Surprisingly,
the LSTM prediction block preformed, on average,
by far best among all predictors considered, and
outperformed all other prediction blocks for each
of the training schemes considered. Another sur-
prise is that even the MLP predictor achieved bet-
ter results than the CRF prediction block for all
training schemes except (a). This contrasts pre-
vious findings on the use of CRFs for sequence-
tagging (Huang et al., 2015), and suggests that the
training scheme, which is analyzed next, is a much
bigger impact on a model’s performance than cer-
tain choices about its architecture for the task of
OIE. Therefore, when trained in the right way, a
simple predictor, such as an MLP, can outperform
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prediction LSTM MLP CRF Spanblock
encoding (a) (b) (c) (d) (a) (b) (c) (d) (a) (a)block

simple embedding block

none F1 0.325 0.402 0.320 0.411 0.125 0.224 0.225 0.325 0.199 0.223
AUC-PR 0.184 0.172 0.181 0.178 0.113 0.112 0.110 0.114 0.136 0.177

BiLSTM F1 0.211 0.535 0.346 0.598 0.123 0.276 0.213 0.460 0.181 0.221
AUC-PR 0.140 0.524 0.277 0.602 0.055 0.219 0.213 0.435 0.119 0.195

BiLSTM-CNN F1 0.225 0.486 0.588 0.589 0.113 0.250 0.241 0.452 0.201 0.230
AUC-PR 0.112 0.474 0.574 0.610 0.065 0.198 0.196 0.420 0.124 0.189

Transformer F1 0.332 0.539 0.351 0.601 0.126 0.281 0.260 0.471 0.205 0.242
AUC-PR 0.132 0.534 0.321 0.597 0.070 0.183 0.206 0.439 0.117 0.178

ALBERT embedding block

none F1 0.329 0.406 0.323 0.415 0.126 0.226 0.225 0.326 0.203 0.256
AUC-PR 0.195 0.175 0.193 0.187 0.107 0.106 0.105 0.107 0.145 0.187

BiLSTM F1 0.333 0.541 0.349 0.623 0.161 0.281 0.263 0.463 0.185 0.253
AUC-PR 0.250 0.504 0.286 0.610 0.120 0.220 0.201 0.435 0.107 0.205

BiLSTM-CNN F1 0.186 0.463 0.596 0.610 0.123 0.276 0.258 0.468 0.203 0.253
AUC-PR 0.081 0.397 0.582 0.614 0.054 0.219 0.211 0.431 0.131 0.193

Transformer F1 0.351 0.555 0.362 0.628 0.117 0.292 0.274 0.476 0.217 0.273
AUC-PR 0.242 0.515 0.278 0.644 0.044 0.204 0.218 0.436 0.149 0.198

References: Angiras (2018) Stanovsky et al. (2018) Jia and Xiang (2019) Zhan and Zhao (2019)

Table 1: The results of our experimental evaluation, where the different columns correspond with the different
training schemes: (a) standard NLL (i.e., considering all labels), (b) disregarding O-tags, (c) optimizing transitions
only, and (d) considering start and end of a triple’s elements only. The best results are underlined for each of the
encoding blocks, and printed boldface for each prediction block.

LSTM 0.431 F1

MLP 0.268 F1

CRF 0.199 F1

Span 0.227 F1

mean 0.293 F1

Figure 4: The average F1 score achieved by each of
the different prediction blocks in comparison with the
overall mean F1.

a more powerful one, such as a CRF, which does
not allow for using the introduced training schemes.
Finally, the mean performance of the SpanOIE pre-
diction block was found to be in between those
values observed for the CRF and the MLP predic-
tor.

Finally, Figure 5 compares the mean performance
achieved for each of the different training schemes
with the overall mean F1 score computed over
all experiments with sequence-tagging models (as
schemes (b) to (d) can be used with these models
only). As illustrated in the figure, we observed
significant differences among the training schemes.
First and foremost, we see that training scheme (d),
which optimizes the first and last positions of sub-

jects, predicates, and objects only, clearly outper-
formed all other schemes. Intuitively, this makes
sense, as this view reduces the problem of OIE
to the absolute minimum, which is the question
of where elements start and end, respectively. In
contrast to this, optimizing the NLL on entire label
sequences, i.e., scheme (a), led to the worst mean
performance. This suggests that O-tags, which
appear most frequently among all labels, are at-
tributed too much importance in general, and steer
away attention from important aspects such as the
boundaries of triples’ elements, which are empha-
sized by the other training schemes. Schemes (b)
and (c) resulted in similar mean F1 scores, close
to the overall mean performance, and hence per-
formed significantly worse than (d). Since the parts
of a label sequence considered by each of these
three schemes allow for reconstructing the entire
sequence, one possible explanation for this is, once
again, that training scheme (d) reduces the task to
the absolute minimum, which might also render the
according learning task as easy as possible.

We want to emphasize that the lenient evaluation
scheme that is used in the context of OIE allows
models to »cheat« in the sense that they can learn
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(a) 0.207 F1

(b) 0.377 F1

(c) 0.328 F1

(d) 0.495 F1

mean 0.352 F1

Figure 5: The average F1 score achieved by each of the
different training schemes, computed just for sequence-
tagging models in comparison with the overall mean F1

for the according experiments.

training scheme
(a) (b) (c) (d)

subject prefix 0.60 0.49 0.50 0.50
suffix 0.51 0.43 0.44 0.52

predicate prefix 0.01 0.01 0.01 0.01
suffix 0.03 0.03 0.03 0.04

object prefix 0.63 0.61 0.59 0.62
suffix 4.23 4.11 3.71 4.55

Table 2: The average number of O-tags predicted as
part of subject, predicate, and object, respectively. To
that end, we refer to O-tags that were prepended to a
target element as prefix, and those that were appended
as suffix.

to not predict O-tags at all to improve the chances
that very long subjects, predicates, and objects actu-
ally cover the syntactic heads of some target triples.
To show that this does not happen with our models,
we computed how often the top model predicted
an O-tag correctly (as O-tag) and how many it la-
belled as part of subjects, predicates, and objects,
respectively. Table 2 summarizes our findings, and
shows that the model is highly accurate on subjects
and predicates, with less than one O-tag prepended
and appended to any target subject or predicate on
average. For objects, we find similar numbers for
prepended, but slightly higher ones for appended
O’s. Manual inspection of the data reveals, how-
ever, that this is justified in most cases. A good
example for this is the one that has been used above:
if the target object »a composer« is predicted as
»a composer of classical music«, then »of classical
music« is a suffix that is represented as series of
O-tags in the dataset, but which may very well be
considered as part of the object. Overall, the model
predicted on average 78.7% of all O-tags correctly
as such for each sample in the test data, which
together with the other statistics supports the con-
clusion that it did not learn to cheat by generating
overly long elements.

For our best-performing model, we conducted ad-
ditional ablation studies, looking at how its perfor-
mance changes when the number of layers in the
encoder (1 in the top model) and the used hidden-

enc. hidden score training scheme
layers size (a) (b) (c) (d)

6 128 F1 0.360 0.402 0.306 0.426
AUC-PR 0.200 0.201 0.196 0.213

1 128 F1 0.347 0.428 0.301 0.431
AUC-PR 0.212 0.303 0.223 0.209

1 512 F1 0.351 0.555 0.362 0.628
AUC-PR 0.242 0.515 0.278 0.644

1 1024 F1 0.418 0.424 0.426 0.446
AUC-PR 0.195 0.204 0.206 0.223

Table 3: Results achieved for different configurations
of our best-performing model, which consists of an AL-
BERT embedding block, a transformer encoding block,
and an LSTM prediction block. The best configuration
is printed boldface.

layer size, in both encoder and predictor, (512 in
the top model) is varied, as summarized in Table 3.
To that end, we noted that increasing the number of
layers in the transformer encoding block resulted
in lower values of both F1 score and AUC-PR.
The same was the case for both increasing and
decreasing the used hidden size. Since our train-
ing data consists of a total of about 1.7M samples
only, a likely explanation is that there is balance
between under- and overfitting the data, which our
top model seems to address well. Finally, we no-
tice a similar pattern with respect to the different
training schemes as the one discussed above.

Some of the existing works on neural OIE em-
ploy correction of malformed predicted label se-
quences (Stanovsky et al., 2018). To that end, or-
phan intermediate labels, i.e., ones that are pre-
ceeded neither by the according head nor by the
same intermediate label, are corrected to O-tags. In
our experiments, this approach did not lead to any
improvements, and is thus not further elaborated on.
Finally, Appendix B provides additional insights
gained in our experiments with predicate-head hint-
ing, which led to an average improvement of 0.074
F1 score and 0.077 AUC-PR, respectively.

6 Conclusion

In this work, we systematically compared a range
of different NN architectures for OIE as well as dif-
ferent schemes for training them. In doing so, we
improved the state of the art on the OIE16 bench-
mark by 0.421F1 and 0.420 AUC-PR, respectively,
(i.e., by more than 200% in both cases) with a novel
model, consisting of an ALBERT embedding block,
a transformer encoding block, and an LSTM pre-
diction block, which was trained by means of a
training scheme using a newly introduced loss for-
mulation. Subsequent analysis revealed that choos-
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ing the right training scheme is as important as
selecting the neural model architecture, as the stan-
dard NLL loss attributes too much importance to
non-essential aspects of the data, and consistently
leads to inferior results.
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Appendices

A Data Preprocessing

For this work, we augmented the OIE16 training
data with samples from another dataset created
by Cui et al. (2018). The latter is a huge dataset,
consisting of more than 36M training samples that
have been generated using OpenIE4 (Angeli et al.,
2015), and contains examples with lower quality
than the OIE16 data. Furthermore, there is usually
just one target triple to extract per sentence in this
dataset, while OIE models are generally expected
to find all of them.

To make effective use of the low-quality dataset,
we had to perform a number of preprocessing steps.
First and foremost, some samples make use of ad-
ditional tags for specifying label sequences. Fol-
lowing Cui et al. (2018), we discarded these tags,
which results in samples that are still valid and
compatible with the standard set of BIO tags, as
presented above. Furthermore, Angiras (2018) ob-
served that models trained on the huge low-quality
dataset tend to saturate in the first training epoch
already, usually resulting in low training, but high

test error. To obtain better results, we thus filtered
the dataset with respect to the distribution of pred-
icates in the target triples. We observed that just
about 8K out of more than 71K predicates appear
at least 50 times, and pruned all training samples
with predicates below this threshold, which left us
with a dataset consisting of about 28M sentences.
Next, we observed highly uneven occurrence statis-
tics of the remaining predicates, and, following
Cui et al. (2018), further down-sampled the data to
avoid training on a dataset with highly imbalanced
target predicates. In doing so, we proceeded as
follows:

• for predicates appearing less than 500 times,
we sampled 50 examples,
• for those with 500 to 1K occurrences, we se-

lected 200 examples,
• predicates with 1K to 10K occurrences were

down-sampled to 500 examples,
• for predicates with 10K and 100K occur-

rences, we sampled 1K examples, and
• for all predicates that appear more than 100K

times, we sampled 3K examples.

Sampling was performed uniformly at random, and
reduced the training data to a total of 1.7M training
samples, which were combined with the training
partition of the OIE16 benchmark dataset. The re-
sulting dataset can be downloaded from our GitHub
repository.

B Hyperparameters

Table 4 summarizes the hyperparameters that were
used in our experiments. These were determined
over a number of initial experiments, and kept con-
stant throughout all training runs conducted for this
paper.

C Analysis with Predicate-head Hinting

Table 5 summarizes the results of our experiments
with predicate-head hinting, and, as expected, we
observed an average improvement of 0.089 F1 and
0.078 AUC-PR, respectively. Surprisingly, how-
ever, the top model in terms of F1 score in this
setting was the one that uses an ALBERT embed-
ding block, a BiLSTM encoding block, and an
LSTM prediction block, followed by the model
that performed best without predicate-head hint-
ing, which uses a transformer encoding block in-
stead. The latter was once again the top model in
terms of AUC-PR, though. In the remainder of this
appendix, we have a closer look at these results,
which provide a few more interesting insights.

First and foremost, we observed that adding an
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model block number of layers
ALBERT embedder 12
BiLSTM Encoder 2
BiLSTM-CNN Encoder 1
Transformer Encoder 1
MLP Predictor 1
CRF Predictor 1
LSTM Predictor 1

hyperparameter value
batch size 128
dropout rate 0.3
hidden size (except ALBERT) 128
hidden size (ALBERT) 768
learning rate 0.0005
maximum gradient norm 2
weight decay λ 10−5

word-piece embedding size 128
PoS embedding size 100
transformer heads 6
transformer query/key/value size 50
transformer encoder hidden size 512
vocab size 30K

Table 4: The hyperparameters that were used through-
out all our experiments.

simple→ALBERT +0.010 F1

+BiLSTM +0.101 F1

+BiLSTM-CNN +0.109 F1

+Transformer +0.111 F1

Figure 6: The average improvements caused by using
an ALBERT embedding block in place of a simple one
and by adding an encoding block to a model in terms of
F1 score, computed across all experiments performed
with predicate-head hinting.

embedding block to a model led, on average, to a
much bigger improvement than this was the case
without predicate-head hinting, as illustrated in
Figure 6. More precisely, we found an average
improvement of 0.107 F1, which is about 0.047 F1

greater than without predicate-head hinting, while
the differences among the considered embedding
blocks remained about the same. This suggests
that all embedding blocks are able to effectively
leverage provided details about the predicate head,
and, in turn, create better encodings of an input
sequence. Furthermore, we see that the transformer
encoding block still leads to the greatest average
improvement. In contrast to this, using ALBERT
instead of a simple embedding block induced an
equally small improvement as before.

Figure 7 provides a comparison of the different
prediction blocks, and, interestingly, we see that
the differences among the predictors are smaller
with predicate-head hinting. One possible expla-
nation for this is that, in this setting, the encoding

LSTM 0.508 F1

MLP 0.369 F1

CRF 0.320 F1

Span 0.302 F1

mean 0.413 F1

Figure 7: The average F1 score achieved with
predicate-head hinting by each of the different predic-
tion blocks in comparison with the overall mean F1.

(a) 0.247 F1

(b) 0.435 F1

(c) 0.470 F1

(d) 0.603 F1

mean 0.439 F1

Figure 8: The average F1 score achieved with
predicate-head hinting by each of the different training
schemes, computed just for sequence-tagging models
in comparison with the overall mean F1 for the accord-
ing experiments.

block accounts for additional details of an input
sequence as part of the computed encoding, which
becomes possible given that the predicate head is
provided as input to the model. This, in turn, re-
duces the impact of the employed prediction block.
Furthermore, we observed that, unlike before, the
CRF predictor performed, on average, slightly bet-
ter than the SpanOIE prediction block, whereas
LSTM and MLP predictors performed notably bet-
ter, albeit with a slightly smaller gap between them
as without predicate-head hinting.

Finally, Figure 8 provides a comparison of the dif-
ferent training schemes, and we see that the impact
of the same has become bigger than this was the
case without predicate-head hinting. This is some-
what surprising, but emphasizes once again that the
introduced schemes are more effective than opti-
mizing the standard NLL, and focus on relevant
aspects of the considered problem, while paying
less attention to incidental details.

D Adjustments of the Model by Jia and
Xiang (2019)

As indicated in the main text already, our BiLSTM-
CNN encoding block is a slightly modified ver-
sion of the hybrid BiLSTM-CNN network intro-
duced by Jia and Xiang (2019). In the original
work, the word embeddings were passed through
a BiLSTM network to give [Lf , Lb], where Lf is a
collection of hidden states from the forward part of
the BiLSTM, and Lb are the hidden states from the
according backward part. In addition to this, the
word representations were also passed through a
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prediction LSTM MLP CRF Spanblock
encoding (a) (b) (c) (d) (a) (b) (c) (d) (a) (a)block

none F1 0.283 0.474 0.390 0.473 0.226 0.325 0.326 0.316 0.307 0.278
AUC-PR 0.273 0.279 0.246 0.273 0.106 0.106 0.107 0.106 0.110 0.114

BiLSTM F1 0.338 0.633 0.438 0.664 0.166 0.358 0.392 0.628 0.304 0.273
AUC-PR 0.255 0.699 0.398 0.710 0.114 0.302 0.334 0.602 0.233 0.115

BiLSTM-CNN F1 0.302 0.542 0.689 0.672 0.164 0.350 0.374 0.627 0.302 0.275
AUC-PR 0.217 0.579 0.680 0.706 0.100 0.301 0.318 0.590 0.243 0.116

Transformer F1 0.339 0.639 0.438 0.692 0.142 0.359 0.388 0.639 0.309 0.295
AUC-PR 0.232 0.642 0.460 0.676 0.069 0.304 0.344 0.599 0.267 0.109

+ ALBERT embedding block

none F1 0.303 0.502 0.404 0.503 0.235 0.326 0.335 0.325 0.356 0.322
AUC-PR 0.277 0.274 0.276 0.278 0.111 0.110 0.113 0.114 0.124 0.137

BiLSTM F1 0.333 0.652 0.446 0.700 0.161 0.402 0.395 0.664 0.304 0.317
AUC-PR 0.250 0.672 0.399 0.726 0.120 0.371 0.348 0.629 0.243 0.139

BiLSTM-CNN F1 0.305 0.552 0.709 0.692 0.173 0.344 0.384 0.636 0.315 0.319
AUC-PR 0.227 0.599 0.700 0.717 0.130 0.300 0.328 0.593 0.253 0.139

Transformer F1 0.342 0.653 0.457 0.711 0.149 0.406 0.398 0.708 0.365 0.339
AUC-PR 0.233 0.639 0.474 0.724 0.079 0.358 0.348 0.577 0.287 0.132

References: Angiras (2018) Stanovsky et al. (2018) Jia and Xiang (2019) Zhan and Zhao (2019)

Table 5: The results of our evaluation with predicate-head hinting, where the different columns correspond with the
different training schemes: (a) standard NLL (i.e., considering all labels), (b) disregarding O-tags, (c) optimizing
transitions only, and (d) considering start and end of a triple’s elements only. The best results are underlined for
each of the encoding blocks, and printed boldface for each prediction block.

CNN to compute a representation vector C. Then,
all vectors in Lf and Lb as well as C were con-
catenated into a single vector, and fed into a dense
layer with a softmax activation to compute predic-
tions. In this work, however, we concatenate the
CNN output with every pair of forward and back-
ward hidden-states from the BiLSTM separately,
resulting in a sequence of hidden representations
that is of equal length as processed input sequence.
These hidden representations are then fed into the
subsequent prediction block.


